留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

搅拌流内大振幅界面波特性研究

王科 叶晶 白博峰

王科, 叶晶, 白博峰等 . 搅拌流内大振幅界面波特性研究[J]. 北京航空航天大学学报, 2017, 43(11): 2286-2292. doi: 10.13700/j.bh.1001-5965.2017.0080
引用本文: 王科, 叶晶, 白博峰等 . 搅拌流内大振幅界面波特性研究[J]. 北京航空航天大学学报, 2017, 43(11): 2286-2292. doi: 10.13700/j.bh.1001-5965.2017.0080
WANG Ke, YE Jing, BAI Bofenget al. Study on properties of huge waves in churn flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2286-2292. doi: 10.13700/j.bh.1001-5965.2017.0080(in Chinese)
Citation: WANG Ke, YE Jing, BAI Bofenget al. Study on properties of huge waves in churn flow[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(11): 2286-2292. doi: 10.13700/j.bh.1001-5965.2017.0080(in Chinese)

搅拌流内大振幅界面波特性研究

doi: 10.13700/j.bh.1001-5965.2017.0080
基金项目: 

国家自然科学基金 51276140

国家自然科学基金 51474229

国家自然科学基金 51706245

中国石油大学(北京)科研基金 2462016YJRC029

详细信息
    作者简介:

    王科  男, 博士, 讲师。主要研究方向:动力工程多相流、反应堆热工水力、石油工程多相流等

    叶晶  男, 博士, 工程师。主要研究方向:气液两相流动与传热

    白博峰  男, 博士, 教授, 博士生导师。主要研究方向:石油工程多相流、复杂液滴动力学、热交换器及热力系统能效提升等

    通讯作者:

    白博峰, E-mail:bfbai@mail.xjtu.edu.cn

  • 中图分类号: O359+.1

Study on properties of huge waves in churn flow

Funds: 

National Natural Science Foundation of China 51276140

National Natural Science Foundation of China 51474229

National Natural Science Foundation of China 51706245

Science Foundation of China University of Petroleum-Beijing 2462016YJRC029

More Information
  • 摘要:

    针对竖直管内不同工况下气液两相搅拌流内的大振幅界面波特征参数(波形、波幅、波长和频率等)及运动特性进行了实验研究,系统分析了流动参数对大振幅界面波特征参数及运动特性的影响规律。结果表明:由于重力和气流剪切力在大振幅界面波不同运动阶段的影响程度不同,大振幅界面波在运动过程中存在与气流先逆向后同向的运动特点,证明了液泛现象普遍存在于搅拌流内,揭示了造成搅拌流液膜振荡剧烈的原因;搅拌流内,大振幅界面波波形符合正态分布函数特征,且波幅较环状流内扰动波波幅大,但是波幅和波长变化趋势与环状流内扰动波变化趋势相似,即波幅和波长随着气速的增大而减小,随液量的增大而增大,且当气速较小时,临界波幅随着液量的增加逐渐趋于定值;而大振幅界面波平均产生频率随气速和液速的增大而增大。

     

  • 图 1  实验系统

    Figure 1.  Experimental system

    图 2  实验工况点在Hewitt-Roberts流型图[15]上的分布

    Figure 2.  Distribution of experimental operating points on Hewitt-Roberts flow pattern map[15]

    图 3  典型搅拌流型特征

    Figure 3.  Typical churn flow pattern properties

    图 4  搅拌流内大波运动发展典型过程

    Figure 4.  Typical huge wave behavior in churn flow

    (dT=19 mm, usg=6.17 m/s, usl=7.49×10-2 m/s)

    图 5  入水段局部大波运动发展过程

    Figure 5.  Detailed movement process of huge wave at water inlet

    (dT=19 mm, usg=6.17 m/s, usl=7.49×10-2m/s)

    图 6  大波下降位置与气速的关系

    Figure 6.  Relationship between huge wave reversal position and gas velocity

    (dT=19 mm, Ml=16.25×10-3 kg/s)

    图 7  低气速、高液速条件下大波和液膜扰动性

    Figure 7.  Huge wave and liquid film perturbation at low gas velocity and high liquid velocity

    (dT=19 mm, usg=4.99 m/s, usl=8.84×10-2 m/s)

    图 8  大波波形提取

    Figure 8.  Extraction of huge wave's wave shape

    图 9  大波平均产生频率在不同工况下的变化规律

    Figure 9.  Variation rule of average huge wave generation frequency under different working conditions

    图 10  实验数据验证式(2)计算精度

    Figure 10.  Computational accuracy of experimental data verification Eq.(2)

    图 11  大波临界波幅变化规律

    Figure 11.  Variation rule of huge wave's critical amplitude

    图 12  大波最大波幅变化规律

    Figure 12.  Variation rule of huge wave's maximum amplitude

    图 13  大波波长变化规律

    Figure 13.  Variation rule of huge wave's wavelength

  • [1] JAYANTI S, HEWITT G F.Prediction of the slug-to-churn flow transition in vertical two-phase flow[J].International Journal of Multiphase Flow, 1992, 18(6):847-860. doi: 10.1016/0301-9322(92)90063-M
    [2] HEWITT G F.Churn and wispy annular flow regimes in vertical gas-liquid flows[J].Energy & Fuels, 2012, 26(7):4067-4077. doi: 10.1021/ef3002422
    [3] JAYANTI S, HEWITT G F, JAYANTI S, et al.Prediction of the slug-to-churn flow transition in vertical two-phase flow[J].International Journal of Multiphase Flow, 1992, 18(6):847-860. doi: 10.1016/0301-9322(92)90063-M
    [4] WANG K, BAI B F, MA W M.An improved liquid film model to predict the CHF based on the influence of churn flow[J].Applied Thermal Engineering, 2014, 64(1-2):422-429. doi: 10.1016/j.applthermaleng.2013.12.064
    [5] NIMWEGEN A T V, PORTELA L M, HENKES R A W M.The effect of surfactants on air-water annular and churn flow in vertical pipes.Part 2:Liquid holdup and pressure gradient dynamics[J].International Journal of Multiphase Flow, 2015, 71:146-158. doi: 10.1016/j.ijmultiphaseflow.2014.03.007
    [6] TEKAVČIČM, KONČAR B, KLJENAK I.Simulation of flooding waves in vertical churn flow[J].Nuclear Engineering and Design, 2015, 299:214-224. http://linkinghub.elsevier.com/retrieve/pii/S0029549315002861
    [7] 王科, 马江, 白博峰.气液团状流界内面波运动模型研究[J].工程热物理学报, 2012, 33(12):2116-2119.

    WANG K, MA J, BAI B F.Kinematics model and simulation of waves in gas-liquid churn flow[J].Journal of Engineering Thermophysics, 2012, 33(12):2116-2119(in Chinese).
    [8] GOVAN A H, HEWITT G F, RICHTER H J, et al. Flooding and churn flow in vertical pipes[J].International Journal of Multiphase Flow, 1991, 17(1):27-44. doi: 10.1016/0301-9322(91)90068-E
    [9] HEWITT G F, MARTIN C, WILKES N.Experimental and modelling studies of annular flow in the region between flow reversal and the pressure drop minimum[J].Physicochemical Hydrodynamics, 1985, 6(1):69-86.
    [10] BARBOSA J R, GOVAN A H, HEWITT G F.Visualisation and modelling studies of churn flow in a vertical pipe[J]. International Journal of Multiphase Flow, 2001, 27(12):2105-2127. doi: 10.1016/S0301-9322(01)00048-9
    [11] BARBOSA J R, HEWITT G F, KÖNIG G, et al.Liquid entrainment, droplet concentration and pressure gradient at the onset of annular flow in a vertical pipe[J].International Journal of Multiphase Flow, 2002, 28(6):943-961. doi: 10.1016/S0301-9322(02)00003-4
    [12] PARSI M, VIEIRA R E, TORRES C F, et al.Experimental investigation of interfacial structures within churn flow using a dual wire-mesh sensor[J].International Journal of Multiphase Flow, 2015, 73:155-170. doi: 10.1016/j.ijmultiphaseflow.2015.03.019
    [13] HEWITT G F, JAYANTI S.To churn or not to churn[J].International Journal of Multiphase Flow, 1993, 19(3):527-529. doi: 10.1016/0301-9322(93)90065-3
    [14] CHAUDHRY A, EMERTON A, JACKSON R.Flow regimes in the co-current upwards flow of water and air[C]//Symposium on Two-phase Flow, 1965:B2.
    [15] HEWITT G F, ROBERTS D.Studies of two-phase flow patterns by simultaneous X-ray and flash photography:AERE-M2159[R].Harwell:UKAEA Report, 1969.
    [16] SAWANT P, ISHⅡ M, HAZUKU T, et al.Properties of disturbance waves in vertical annular two-phase flow[J].Nuclear Engineering and Design, 2008, 238(12):3528-3541. doi: 10.1016/j.nucengdes.2008.06.013
  • 加载中
图(13)
计量
  • 文章访问数:  362
  • HTML全文浏览量:  9
  • PDF下载量:  409
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-21
  • 录用日期:  2017-07-21
  • 刊出日期:  2017-11-20

目录

    /

    返回文章
    返回
    常见问答