留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于ITD和改进形态滤波的滚动轴承故障诊断

余建波 吕靖香 程辉 孙习武 吴昊

余建波, 吕靖香, 程辉, 等 . 基于ITD和改进形态滤波的滚动轴承故障诊断[J]. 北京航空航天大学学报, 2018, 44(2): 241-249. doi: 10.13700/j.bh.1001-5965.2017.0114
引用本文: 余建波, 吕靖香, 程辉, 等 . 基于ITD和改进形态滤波的滚动轴承故障诊断[J]. 北京航空航天大学学报, 2018, 44(2): 241-249. doi: 10.13700/j.bh.1001-5965.2017.0114
YU Jianbo, LYU Jingxiang, CHENG Hui, et al. Fault diagnosis for rolling bearing based on ITD and improved morphological filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 241-249. doi: 10.13700/j.bh.1001-5965.2017.0114(in Chinese)
Citation: YU Jianbo, LYU Jingxiang, CHENG Hui, et al. Fault diagnosis for rolling bearing based on ITD and improved morphological filter[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 241-249. doi: 10.13700/j.bh.1001-5965.2017.0114(in Chinese)

基于ITD和改进形态滤波的滚动轴承故障诊断

doi: 10.13700/j.bh.1001-5965.2017.0114
基金项目: 

国家自然科学基金 51375290

国家自然科学基金 71777173

上海航天科技创新基金 SAST2015054

中央高校基本科研业务费专项资金 22120180068

详细信息
    作者简介:

    余建波 男, 博士, 教授, 博士生导师。主要研究方向:设备智能预诊维护与可靠性、模式识别与机器学习

    吕靖香 女, 硕士研究生。主要研究方向:故障诊断和信号处理

    通讯作者:

    余建波, E-mail:jbyu@tongji.edu.cn

  • 中图分类号: TH165.3;TN911.7

Fault diagnosis for rolling bearing based on ITD and improved morphological filter

Funds: 

National Natural Science Foundation of China 51375290

National Natural Science Foundation of China 71777173

Shanghai Aerospace Science and Technology Innovation Fund SAST2015054

the Fundamental Research Funds for the Central Universities 22120180068

More Information
  • 摘要:

    为从受谐波和随机噪声干扰的振动信号中提取出故障冲击成分,融合四大基本形态学算子提出了改进形态滤波方法——平均组合差值形态滤波(ACDIF)方法,同时与固有时间尺度分解(ITD)相结合,并将ITD-ACDIF方法应用到滚动轴承的故障诊断中。首先,对轴承振动信号进行ITD分解得到一系列旋转分量(PRC);然后,以峭度为准则筛选出含故障信息丰富的有效PRC,对每个有效分量进行ACDIF滤波提取冲击成分进行信号重构;最后,利用频谱分析提取重构信号中的故障特征。数值仿真和轴承故障振动信号的试验结果表明,本文方法可有效滤除谐波干扰,提取强背景噪声下的冲击故障特征,实现设备的故障诊断。

     

  • 图 1  基于ITD-ACDIF的故障诊断流程

    Figure 1.  Fault diagnosis process based on ITD-ACDIF

    图 2  仿真信号时域波形及其幅值谱

    Figure 2.  Time-domain waveform and amplitude spectrum of simulated signal

    图 3  仿真信号DIF滤波结果

    Figure 3.  DIF filtering results of simulated signal

    图 4  仿真信号ACDIF滤波结果

    Figure 4.  ACDIF filtering results of simulated signal

    图 5  仿真信号的ITD分解结果

    Figure 5.  ITD decomposition results of simulated signal

    图 6  有效PRC ACDIF滤波后结果

    Figure 6.  ACDIF filtering results of effective PRC

    图 7  合成信号时域波形及其幅值谱

    Figure 7.  Time-domain waveform and amplitude spectrum of synthetic signal

    图 8  试验台

    Figure 8.  Test-bed

    图 9  外圈故障信号时域波形及其幅值谱

    Figure 9.  Time-domain waveform and amplitude spectrum of outer race fault signal

    图 10  外圈故障信号的ITD分解结果

    Figure 10.  ITD decomposition results of outer race fault signal

    图 11  外圈故障信号有效PRC ACDIF滤波后结果

    Figure 11.  Filtering results of effective PRC of outer race fault signal

    图 12  外圈合成信号时域波形及其幅值谱

    Figure 12.  Time-domain waveform and amplitude spectrum of outer race synthetic signal

    图 13  ITD-DIF结果信号的时域波形及其幅值谱

    Figure 13.  Time-domain waveform and amplitude spectrum of ITD-DIF result signal

    图 14  外圈故障信号的EMD分解结果

    Figure 14.  EMD decomposition results of outer race fault signal

    图 15  EMD-ACDIF结果信号的时域波形及其幅值谱

    Figure 15.  Time-domain waveform and amplitude spectrum of EMD-ACDIF result signal

    图 16  Hilbert解调结果信号的时域波形及其幅值谱

    Figure 16.  Time-domain waveform and amplitude spectrum of Hilbert demodulation result signal

    表  1  轴承结构参数

    Table  1.   Structure parameters of bearing

    参数 数值
    负载/kN 12.74
    节径/mm 65.5
    钢球直径/mm 15.08
    钢球数 8
    接触角/(°) 0
    下载: 导出CSV

    表  2  轴承外圈故障数据

    Table  2.   Fault data of bearing outer race

    参数 数值
    采样频率/kHz 20.0
    采样点数 2 048
    发动机转速/(r·min-1) 4 000
    转轴基频/Hz 66.67
    故障频率/Hz 205.29
    下载: 导出CSV

    表  3  各PRC及R的峭度值

    Table  3.   Kurtosis values of PRC and R

    分量 峭度
    PRC1 3.52
    PRC2 3.46
    PRC3 4.83
    PRC4 2.83
    R 2.44
    下载: 导出CSV

    表  4  各IMF分量及R的峭度值

    Table  4.   Kurtosis values of IMF components and R

    分量 峭度
    IMF1 4.36
    IMF2 3.43
    IMF3 2.98
    IMF4 2.85
    R 2.57
    下载: 导出CSV
  • [1] YU J.Local and nonlocal preserving projection for bearing defect classification and performance assessment[J].IEEE Transactions on Industrial Electronics, 2012, 59(5):2363-2376. doi: 10.1109/TIE.2011.2167893
    [2] 李舜酩, 郭海东, 李殿荣.振动信号处理方法综述[J].仪器仪表学报, 2013, 34(8):1907-1915. http://d.wanfangdata.com.cn/Periodical_yqyb201308031.aspx

    LI S M, GUO H D, LI D R.Review of vibration signal processing methods[J].Chinese Journal of Scientific Instrument, 2013, 34(8):1907-1915(in Chinese). http://d.wanfangdata.com.cn/Periodical_yqyb201308031.aspx
    [3] FREI M G, OSORIO I.Intrinsic time-scale decomposition:Time-frequency-energy analysis and real-time filtering of non-stationary signals[J].Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2007, 463(2078):321-342. doi: 10.1098/rspa.2006.1761
    [4] HUANG N E, SHEN Z, LONG S R, et al.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 1998, 454(1971):903-995. doi: 10.1098/rspa.1998.0193
    [5] 张琳, 黄敏.基于EMD和切片双谱的轴承故障诊断方法[J].北京航空航天大学学报, 2010, 36(3):287-290. http://bhxb.buaa.edu.cn/CN/abstract/abstract8498.shtml

    ZHANG L, HUANG M.Fault diagnosis approach for bearing based on EMD and slice bi-spectrum[J].Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(3):287-290(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8498.shtml
    [6] 程军圣, 李海龙, 杨宇.改进ITD和能量矩在齿轮故障诊断中的应用[J].振动、测试与诊断, 2013, 33(6):954-959. doi: 10.3969/j.issn.1004-6801.2013.06.006

    CHENG J S, LI H L, YANG Y.Based on the improved ITD and energy moment to diagnose the gear[J].Journal of Vibration, Measurement & Diagnosis, 2013, 33(6):954-959(in Chinese). doi: 10.3969/j.issn.1004-6801.2013.06.006
    [7] FENG Z, LIN X, ZUO M.Joint amplitude and frequency demodulation analysis based on intrinsic time-scale decomposition for planetary gearbox fault diagnosis[J].Mechanical Systems and Signal Processing, 2016, 72-73:223-240. doi: 10.1016/j.ymssp.2015.11.024
    [8] HU A, YAN X, XIANG L.A new wind turbine fault diagnosis method based on ensemble intrinsic time-scale decomposition and WPT-fractal dimension[J].Renewable Energy, 2015, 83:767-778. doi: 10.1016/j.renene.2015.04.063
    [9] MARAGOS P, SCHAFER R W.Morphological filters-Part Ⅰ:Their set-theoretic analysis and relations to linear shift-invariant filters[J].IEEE Transactions on Acoustics, Speech, and Signal Proceeding, 1987, 35(8):1153-1169. doi: 10.1109/TASSP.1987.1165259
    [10] 李兵, 张培林, 刘东升, 等.基于形态梯度解调算子的齿轮故障特征提取[J].振动、测试与诊断, 2010, 30(1):39-42. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdcsyzd201001009

    LI B, ZHANG P L, LIU D S, et al.Feature extraction for gear fault diagnosis using morphological gradient demodulation[J].Journal of Vibration, Measurement & Diagnosis, 2010, 30(1):39-42(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zdcsyzd201001009
    [11] HU Z, WANG C, ZHU J, et al.Bearing fault diagnosis based on an improved morphological filter[J].Measurement, 2016, 80:163-178. doi: 10.1016/j.measurement.2015.11.028
    [12] 张平, 张小栋, 董晓妮, 等.自调整复合级联形态滤波算法及应用[J].振动、测试与诊断, 2015, 35(3):459-463. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zdcsyzd201503009

    ZHANG P, ZHANG X D, DONG X N, et al.Self-adjusting composite cascade morphology filter algorithm and its application[J].Journal of Vibration, Measurement & Diagnosis, 2015, 35(3):459-463(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_zdcsyzd201503009
    [13] HARALICK R M, STERNBERG S R, ZHUANG X.Image analysis using mathematical morphology[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 1987, 9(4):532-550. https://dl.acm.org/citation.cfm?id=28802
    [14] 章立军, 杨德斌, 徐金梧, 等.基于数学形态滤波的齿轮故障特征提取方法[J].机械工程学报, 2007, 43(2):71-75. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jxgcxb200702011

    ZHANG L J, YANG D B, XU J W, et al.Approach to extracting gear fault feature based on mathematical morphological filtering[J].Journal of Mechanical Engineering, 2007, 43(2):71-75(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_jxgcxb200702011
    [15] RAJ A S, MURALI N.Early classification of bearing faults using morphological operators and fuzzy inference[J].IEEE Transactions on Industrial Electronics, 2013, 60(2):567-574. doi: 10.1109/TIE.2012.2188259
    [16] FELDMAN M.Hilbert transform in vibration analysis[J].Mechanical Systems and Signal Processing, 2011, 25(3):735-802. doi: 10.1016/j.ymssp.2010.07.018
  • 加载中
图(16) / 表(4)
计量
  • 文章访问数:  393
  • HTML全文浏览量:  0
  • PDF下载量:  430
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-03-02
  • 录用日期:  2017-04-24
  • 刊出日期:  2018-02-20

目录

    /

    返回文章
    返回
    常见问答