留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于输入成形的太阳能帆板自适应滑模控制

周通 郭宏 徐金全

周通, 郭宏, 徐金全等 . 基于输入成形的太阳能帆板自适应滑模控制[J]. 北京航空航天大学学报, 2018, 44(4): 737-745. doi: 10.13700/j.bh.1001-5965.2017.0276
引用本文: 周通, 郭宏, 徐金全等 . 基于输入成形的太阳能帆板自适应滑模控制[J]. 北京航空航天大学学报, 2018, 44(4): 737-745. doi: 10.13700/j.bh.1001-5965.2017.0276
ZHOU Tong, GUO Hong, XU Jinquanet al. Adaptive sliding mode control of solar array with input shaping[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 737-745. doi: 10.13700/j.bh.1001-5965.2017.0276(in Chinese)
Citation: ZHOU Tong, GUO Hong, XU Jinquanet al. Adaptive sliding mode control of solar array with input shaping[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 737-745. doi: 10.13700/j.bh.1001-5965.2017.0276(in Chinese)

基于输入成形的太阳能帆板自适应滑模控制

doi: 10.13700/j.bh.1001-5965.2017.0276
基金项目: 

航空科学基金 2016ZC51025

详细信息
    作者简介:

    周通  男, 博士研究生。主要研究方向:太阳能帆板驱动系统的高精度控制、特种电机设计与驱动控制

    郭宏  男, 博士, 教授, 博士生导师。主要研究方向:机载电气系统设计、特种电机设计及其驱动控制

    徐金全  男, 博士, 讲师。主要研究方向:高可靠电机设计及其驱动控制

    通讯作者:

    徐金全, E-mail: xujinquan@buaa.edu.cn

  • 中图分类号: V442

Adaptive sliding mode control of solar array with input shaping

Funds: 

Aeronautical Science Foundation of China 2016ZC51025

More Information
  • 摘要:

    为提高太阳能帆板驱动系统(SADS)的角位置控制性能和抑制太阳能帆板的柔性振动,提出了一种自适应滑模控制(ASMC)与输入成形技术相结合的控制策略。该控制策略通过自适应滑模控制保证了系统在不确定性影响下的一致有界性和渐进一致有界性,从而提高了太阳能帆板驱动系统的角位置控制性能。同时,通过基于参考模型的输入成形器(IS)规划了指令轨迹,进而抑制了太阳能帆板的柔性振动。仿真结果表明了控制策略的有效性。

     

  • 图 1  太阳能帆板驱动系统结构

    Figure 1.  Structure of SADS

    图 2  基于本文控制策略的太阳能帆板驱动系统控制结构

    Figure 2.  Control structure of SADS based on proposed control strategy

    图 3  输入成形器原理图

    Figure 3.  Schematic diagram of IS

    图 4  随机干扰力矩波形

    Figure 4.  Random disturbance torque waveform

    图 5  角位置响应波形图及其局部放大图

    Figure 5.  Oscillogram of time response of angular position and its partial enlarged views

    图 6  角速度响应波形图

    Figure 6.  Oscillogram of time response of angular velocity

    图 7  振动能量波形图

    Figure 7.  Oscillogram of vibration energy

    图 8  驱动力矩波形图

    Figure 8.  Oscillogram of driving torque

    表  1  太阳能帆板驱动系统仿真参数[29-30]

    Table  1.   Simulation parameters of SADS[29-30]

    参数 数值
    定子电阻/Ω 28
    定子电感/H 0.134
    极对数 12
    转矩常数/(N·m·A-1) 9.22
    额定电流/A 1.4
    额定功率/W 22
    传动比 325
    最大静摩擦力矩/(N·m) 404.54
    第一阶模态耦合系数 188.7
    第二阶模态耦合系数 30.1
    第一阶模态阻尼比 0.01
    第二阶模态阻尼比 0.01
    第一阶模态角频率/(rad·s-1) 1.789
    第二阶模态角频率/(rad·s-1) 11.21
    转动惯量/(kg·m2) 1.7×106
    滑动摩擦力矩/(N·m) 324.31
    下载: 导出CSV

    表  2  3种控制器的仿真参数

    Table  2.   Simulation parameters of three controllers

    控制器 参数 数值
    PID控制 比例系数(位置环) 0.075
    积分系数(位置环) 0.000 8
    微分系数(位置环) 2
    比例系数(速度环) 33.3
    积分系数(速度环) 0.1
    微分系数(速度环) 0
    比例系数(电流环) 500
    积分系数(电流环) 6 000
    微分系数(电流环) 0
    ASMC KP 1 530
    KD 89 760
    k 3
    κ 150
    χ 3
    IS A1 0.26
    A2 0.25
    A3 0.25
    A4 0.24
    t1/s 0
    t2/s 0.28
    t3/s 1.76
    t4/s 2.03
    下载: 导出CSV
  • [1] JOSE S, GOPALAKRISHNAN E, TANGIRALA A K, et al.Stiffness control of cylindrical shells under axial compression using piezocomposite actuators-An experimental investigation[J].Mechanics of Advanced Materials and Structures, 2017, 24(1):16-26. doi: 10.1080/15376494.2015.1091531
    [2] SHIN C, HONG C, JEONG W B, et al.Active vibration control of plates using positive position feedback control with PZT actuators[J].Noise Control Engineering Journal, 2016, 64(2):279-289. doi: 10.3397/1/376378
    [3] OMIDI E, MAHMOODI S N. Novel hybrid positive feedback control for active vibration suppression in flexible structure[C]//2014 American Control Conference. Piscataway, NJ: IEEE Press, 2014: 2723-2728.
    [4] GASBARRI P, SABATINI M, LEONANGELI N, et al.Flexibility issues in discrete on-off actuated spacecraft:Numerical and experimental tests[J].Acta Astronautica, 2014, 101:81-97. doi: 10.1016/j.actaastro.2014.04.012
    [5] GASBARRI P, MONTI R, SABATINI M.Very large space structures:Non-linear control and robustness to structural uncertainties[J].Acta Astronautica, 2014, 93:252-265. doi: 10.1016/j.actaastro.2013.07.022
    [6] NA S, TANG G, CHEN L.Vibration reduction of flexible solar array during orbital maneuver[J].Aircraft Engineering and Aerospace Technology, 2014, 86(2):155-164. doi: 10.1108/AEAT-05-2012-0072
    [7] PAI M.Closed-loop input shaping control of vibration in flexible structures via adaptive sliding mode control[J].Shock and Vibration, 2012, 19(2):221-233. doi: 10.1155/2012/803479
    [8] SINGHOSE W, PORTER L, KENISON M, et al.Effects of hoisting on the input shaping control of gantry cranes[J].Control Engineering Practice, 2000, 8(10):1159-1165. doi: 10.1016/S0967-0661(00)00054-X
    [9] SINGER N, SEERING W.Preshaping command inputs to reduce system vibration[M].Cambridge:MIT Press, 1988:76-82.
    [10] LU D, LIU Y.Singular formalism and admissible control of spacecraft with rotating flexible solar array[J].Chinese Journal of Aeronautics, 2014, 27(1):136-144. doi: 10.1016/j.cja.2013.12.010
    [11] LEE K W, SINGH S N.L1 adaptive control of flexible spacecraft despite disturbances[J].Acta Astronautica, 2012, 80:24-35. doi: 10.1016/j.actaastro.2012.05.007
    [12] HU Q.Robust adaptive attitude tracking control with L2-gain performance and vibration reduction of an orbiting flexible spacecraft[J].Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME, 2011, 133(1):011009. doi: 10.1115/1.4001703
    [13] PUKDEBOON C.Adaptive-gain second-order sliding mode control of attitude tracking of flexible spacecraft[J].Mathematical Problems in Engineering, 2014, 2014(5):693-697. https://www.hindawi.com/journals/mpe/2014/312494/ref/
    [14] CHU M, CHEN G, JIA Q, et al.Simultaneous positioning and non-minimum phase vibration suppression of slewing flexible-link manipulator using only joint actuator[J].Journal of Vibration and Control, 2014, 20(10):1488-1497. doi: 10.1177/1077546312470477
    [15] ALIPOUR K, ZARAFSHAN P, EBRAHIMI A.Dynamics modeling and attitude control of a flexible space system with active stabilizers[J].Nonlinear Dynamics, 2016, 84(4):2535-2545. doi: 10.1007/s11071-016-2663-y
    [16] PAI M.Discrete-time dynamic output feedback input shaping control of vibration in uncertain time-delay flexible structures[J].Applied Mathematics and Computation, 2015, 250:675-688. doi: 10.1016/j.amc.2014.11.038
    [17] PAI M.Robust input shaping control for multi-mode flexible structures using neuro-sliding mode output feedback control[J].Journal of the Franklin Institute, 2012, 349(3):1283-1303. doi: 10.1016/j.jfranklin.2012.01.012
    [18] HU Q.Robust adaptive sliding mode attitude control and vibration damping of flexible spacecraft subject to unknown disturbance and uncertainty[J].Transactions of the Institute of Measurement and Control, 2012, 34(4):436-447. doi: 10.1177/0142331210394033
    [19] XU W, MENG D, CHEN Y, et al.Dynamics modeling and analysis of a flexible-base space robot for capturing large flexible spacecraft[J].Multibody System Dynamics, 2014, 32(3):357-401. doi: 10.1007/s11044-013-9389-0
    [20] 白圣建, 黄新生.快速机动大型挠性航天器的动力学建模[J].航空学报, 2009, 30(10):1985-1992. doi: 10.3321/j.issn:1000-6893.2009.10.032

    BAI S J, HUANG X S.Dynamic modeling of large flexible spacecraft undergoing fast maneuvering[J].Acta Aeronautica et Astronautica Sinica, 2009, 30(10):1985-1992(in Chinese). doi: 10.3321/j.issn:1000-6893.2009.10.032
    [21] LI J, LI S, CHEN X.Adaptive speed control of a PMSM servo system using an RBFN disturbance observer[J].Transactions of the Institute of Measurement and Control, 2012, 34(5):615-626. doi: 10.1177/0142331211410920
    [22] LIU H, LI S.Speed control for PMSM servo system using predictive functional control and extended state observer[J].IEEE Transactions on Industrial Electronics, 2012, 59(2):1171-1183. doi: 10.1109/TIE.2011.2162217
    [23] LIANG H, SUN Z, WANG J.Robust decentralized attitude control of spacecraft formations under time-varying topologies, model uncertainties and disturbances[J].Acta Astronautica, 2012, 81(2):445-455. doi: 10.1016/j.actaastro.2012.08.017
    [24] WU S, RADICE G, GAO Y, et al.Quaternion-based finite time control for spacecraft attitude tracking[J].Acta Astronautica, 2011, 69(1-2):48-58. doi: 10.1016/j.actaastro.2011.03.001
    [25] HU Q.Input shaping and variable structure control for simultaneous precision positioning and vibration reduction of flexible spacecraft with saturation compensation[J].Journal of Sound and Vibration, 2008, 318(1-2):18-35. doi: 10.1016/j.jsv.2008.03.068
    [26] SUNG Y G, SINGHOSE W E.Robustness analysis of input shaping commands for two-mode flexible systems[J].IET Control Theory and Applications, 2009, 3(6):722-730. doi: 10.1049/iet-cta.2007.0328
    [27] CORLESS M J, LEITMANN G.Continuous state feedback guaranteeing uniform ultimate boundedness for uncertain dynamic systems[J].IEEE Transactions on Automatic Control, 1981, 26(5):1139-1144. doi: 10.1109/TAC.1981.1102785
    [28] IOANNO P A, KOKOTOVIC P V.Robust redesign of adaptive control[J].IEEE Transactions on Automatic Control, 1984, 29(3):202-211. doi: 10.1109/TAC.1984.1103490
    [29] LIM T W, COOPER P A, AYERS J K. Structural dynamic interaction with solar tracking control for evolutionary space station concepts[C]//Proceedings of the 33rd Structures, Structural Dynamics and Materials Conference. Reston: AIAA, 1992: 2108-2117.
    [30] BOUCHER R L. Mechanically induced g-jitter from space station rotary joints: JSC-CN-6110[R]. Washington, D. C. : NASA, 2000.
    [31] BOUCHER R L. Identification and mitigation of low frequency vibration sources on space station[C]//Dynamics Specialists Conference. Reston: AIAA, 1996: 451-462.
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  361
  • HTML全文浏览量:  3
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-02
  • 录用日期:  2017-08-01
  • 刊出日期:  2018-04-20

目录

    /

    返回文章
    返回
    常见问答