留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Ni晶界上金属和非金属元素的相互作用

方淑娟 石松鑫 祝令刚 周健

方淑娟, 石松鑫, 祝令刚, 等 . Ni晶界上金属和非金属元素的相互作用[J]. 北京航空航天大学学报, 2018, 44(4): 862-867. doi: 10.13700/j.bh.1001-5965.2017.0293
引用本文: 方淑娟, 石松鑫, 祝令刚, 等 . Ni晶界上金属和非金属元素的相互作用[J]. 北京航空航天大学学报, 2018, 44(4): 862-867. doi: 10.13700/j.bh.1001-5965.2017.0293
FANG Shujuan, SHI Songxin, ZHU Linggang, et al. Interaction between metallic and nonmetallic elements on grain boundary of nickel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 862-867. doi: 10.13700/j.bh.1001-5965.2017.0293(in Chinese)
Citation: FANG Shujuan, SHI Songxin, ZHU Linggang, et al. Interaction between metallic and nonmetallic elements on grain boundary of nickel[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 862-867. doi: 10.13700/j.bh.1001-5965.2017.0293(in Chinese)

Ni晶界上金属和非金属元素的相互作用

doi: 10.13700/j.bh.1001-5965.2017.0293
基金项目: 

国家自然科学基金 51401009

国家自然科学基金 51571008

详细信息
    作者简介:

    方淑娟  女, 硕士研究生。主要研究方向:镍基高温合金

    祝令刚  男, 博士, 讲师。主要研究方向:材料的力学性能、缺陷结构以及材料中的物质扩散

    通讯作者:

    祝令刚, E-mail: lgzhu7@buaa.edu.cn

  • 中图分类号:  V252.2;O483;O77+1

Interaction between metallic and nonmetallic elements on grain boundary of nickel

Funds: 

National Natural Science Foundation of China 51401009

National Natural Science Foundation of China 51571008

More Information
  • 摘要:

    采用基于密度泛函理论的第一性原理计算方法,研究了常用合金化元素与非金属元素在晶界(GB)的偏析及其相互作用。选取2种类型的晶界结构进行研究:密排的晶界和较疏松的晶界。溶解能计算表明,金属和非金属元素在∑5晶界上均有明显的偏析行为,而在∑3晶界上的偏析现象不明显。通过计算常用过渡族合金化元素与非金属杂质C、H、O、N、B在各自最稳定位置的相互作用能,发现Ru、Re、W和Ta对O有强烈的排斥作用,因此对晶界抗氧化有益处;Ta排斥H,有抗晶界氢脆的效果。通过对金属元素与非金属元素在晶界上相互作用的系统研究,为Ni合金的晶界工程提供有价值的参考。

     

  • 图 1  2种晶界弛豫后沿[001]方向结构

    Figure 1.  Two relaxed grain boundary structures viewed along [001] direction

    图 2  溶解能随合金化元素占晶界不同原子层的变化

    Figure 2.  Variation of solution energy with alloying elements doped at different layers

    图 3  Σ5晶界平面上间隙位置

    Figure 3.  Doping sites at Σ5 GB interface plane

    图 4  金属与非金属元素在晶界上各自最稳定的位置

    Figure 4.  The most stable positions of metallic and nonmetallic elements on grain boundaries

    图 5  强偏析金属元素与非金属元素在∑5晶界上的相互作用能

    Figure 5.  Interaction energies between metallic elements with significant segregation tendency and nonmetallic elements on ∑5 grain boundary

    表  1  单个非金属原子占据Σ5晶界孔洞处不同位置的溶解能

    Table  1.   Solution energy of Σ5 grain boundary containing one nonmetallic atom at different sites on hollow of GB planeeV

    eV
    Σ5晶界间隙位置 EHsol ECsol EOsol ENsol EBsol
    1 -1.693 0.747 -1.165 -1.146 -0.899
    2 -1.691 0.583 -0.880 -1.683 -0.898
    3 -1.736 0.745 -1.539 -1.459 -0.899
    4 -1.736 0.744 -0.968 -1.459 -0.899
    5 -1.736 0.744 -1.541 -1.461 -0.900
    6 -1.736 0.743 -1.541 -1.462 -0.900
    下载: 导出CSV

    表  2  间隙原子在晶界和块体处的溶解能差值

    Table  2.   Solution energy differences of interstitial atoms at grain boundary and bulkeV

    eV
    晶界 间隙 H C O N B
    ∑3 o 0.280 0.038 0.562 1.235 -0.012
    t 0.008 0.067 0.078 0.073 0.070
    ∑5 o -0.281 -1.519 -2.111 -0.650 -1.857
    t -0.196 -0.474 -0.314 0.154 -0.394
    下载: 导出CSV
  • [1] 黄乾尧, 李汉康.高温合金[M].北京:冶金工业出版社, 2000:3.

    HUANG Q Y, LI H K.Superalloys[M].Beijing:Metallurgical Industry Press, 2000:3(in Chinese).
    [2] 郭建亭.高温合金材料学[M].北京:科学出版社, 2008:4.

    GUO J T.Materials science and engineering for superalloys[M].Beijing:Science Press, 2008:4(in Chinese).
    [3] VISKARI L H, RNQVIST M, MOORE K L, et al.Intergranularcrack tip oxidation in a Ni-base superalloy[J].Acta Materialia, 2013, 61(10):3630-3639. doi: 10.1016/j.actamat.2013.02.050
    [4] ALEXANDROV V, SUSHKO M L, SCHREIBER D K, et al.Ab initio modeling of bulk and intragranular diffusion in Ni alloys[J].Journal of Physical Chemistry Letters, 2015, 6(9):1618-1623. doi: 10.1021/acs.jpclett.5b00177
    [5] BECHTLE S, KUMAR M, SOMERDAY B P, et al.Grain-boun-dary engineering markedly reduces susceptibility to intergra-nular hydrogen embrittlement in metallic materials[J].Acta Materialia, 2009, 57(14):4148-4157. doi: 10.1016/j.actamat.2009.05.012
    [6] ANGELO J E, MOODY N R, BASKES M I.Trapping of hydrogen to lattice defects in nickel[J].Modelling & Simulation in Materials Science & Engineering, 1995, 3(3):289-307. http://cn.bing.com/academic/profile?id=7e072c63c428d681961ae085d5b54f6b&encoded=0&v=paper_preview&mkt=zh-cn
    [7] DINGREVILLE R, BERBENNI S.On the interaction of solutes with grain boundaries[J].Acta Materialia, 2016, 104:237-49. doi: 10.1016/j.actamat.2015.11.017
    [8] 刘文冠. 基于第一性原理的镍基合金晶界脆化机理的理论研究[D]: 北京: 中国科学院大学, 2014: 37.

    LIU W G. First-principles study of intergranular embrittlement in Ni-based alloy[D]: Beijing: University of Chinese Academy of Sciences, 2014: 37(in Chinese).
    [9] SINGH N, TALAPATRA A, JUNKAEW A, et al.Effect of ternary additions to structural properties of NiTi alloys[J].Computational Materials Science, 2016, 112:347-355. doi: 10.1016/j.commatsci.2015.10.029
    [10] AI C, LI S, LIANG Y, et al.Influence of Mo and Ta additions on solidification behavior of Ni3Al single crystal alloys[J].Progress in Natural Science:Materials International, 2015, 25(4):353-360. doi: 10.1016/j.pnsc.2015.07.001
    [11] ZHAO W, SUN Z, GONG S.Synergistic effect of co-alloying elements on site preferences and elastic properties of Ni3Al:A first-principles study[J].Intermetallics, 2015, 65:75-80. doi: 10.1016/j.intermet.2015.06.006
    [12] 周自强.晶界研究的现状和发展[J].北京航空航天大学学报, 1989, 3(3):117-124. http://www.cqvip.com/QK/90359X/198901/6425.html

    ZHOU Z Q.Recent progress and development on grain boundary research[J].Journal of Beijing University of Aeronautics and Astronautics, 1989, 3(3):117-124(in Chinese). http://www.cqvip.com/QK/90359X/198901/6425.html
    [13] BAGOT P A J, SILK O B W, DOUGLAS J O, et al.An atom probe tomography study of site preference and partitioning in a nickel-based superalloy[J].Acta Materialia, 2017, 125:156-165. doi: 10.1016/j.actamat.2016.11.053
    [14] RAZUMOVSKIY V I, LOZOVOI A Y, RAZUMOVSKⅡ I M.First-principles-aided design of a new Ni-base superalloy:Influence of transition metal alloying elements on grain boundary and bulk cohesion[J].Acta Materialia, 2015, 82:369-377. doi: 10.1016/j.actamat.2014.08.047
    [15] VŠIANSKÁ M, ŠOB M.The effect of segregated sp-impurities on grain-boundary and surface structure, magnetism and emb-rittlement in nickel[J].Progress in Materials Science, 2011, 56(6):817-840. doi: 10.1016/j.pmatsci.2011.01.008
    [16] STEFANO D D, MROVEC M, ELSÄSSER C.First-principles investigation of hydrogen trapping and diffusion at grain boundaries in nickel[J].Acta Materialia, 2015, 98:306-312. doi: 10.1016/j.actamat.2015.07.031
    [17] ZHANG S, KONTSEVOI O Y, FREEMAN A J, et al.First pric-iples investigation of zinc-induced embrittlement in an alumi-num grain boundary[J].Acta Materialia, 2011, 59(15):6155-6167. doi: 10.1016/j.actamat.2011.06.028
    [18] KRESSE G, FURTHMVLLER J.Efficiency of Ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J].Computational Materials Science, 1996, 6(1):15-50. doi: 10.1016/0927-0256(96)00008-0
    [19] ERNZERHOF M.Generalized gradient approximation made simple[J].Physical Review Letters, 1996, 77(18):3865. doi: 10.1103/PhysRevLett.77.3865
    [20] PERDEW J P, CHEVARY J, VOSKO S, et al.Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation[J].Physical Review B, 1992, 46(11):6671. doi: 10.1103/PhysRevB.46.6671
    [21] LIU W, HAN H, REN C, et al.Effects of rare-earth on the coh-esion of Ni ∑5(012) grain boundary from first-principles ca-lculations[J].Computational Materials Science, 2015, 96:374-378. doi: 10.1016/j.commatsci.2014.09.035
    [22] XIA S, ZHOU B X, CHEN W J, et al.Effects of strain and annealing processes on the distribution of ∑3 boundaries in a Ni-based superalloy[J].Scripta Materialia, 2006, 54(12):2019-2022. doi: 10.1016/j.scriptamat.2006.03.014
    [23] OGAWA H.GBstudio:A builder software on periodic models of CSL boundaries for molecular simulation[J].Materials Transactions, 2006, 47(11):2706-2710. doi: 10.2320/matertrans.47.2706
    [24] 祝令刚. Ti和Nb合金中氧化问题的理论研究[D]. 沈阳: 中国科学院金属研究所, 2013: 84.

    ZHU L G. Theoretical study on the oxidation of Ti and Nb-based alloys[D]. Shenyang: Insititute of Metal Research, Chinese Academy of Sciences, 2013: 84(in Chinese).
    [25] ALAM T, FELFER P J, CHATURVEDI M, et al.Segregation of B, P, and C in the Ni-based superalloy, inconel 718[J].Metallurgical and Materials Transactions A, 2012, 43(7):2183-2191. doi: 10.1007/s11661-012-1085-9
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  320
  • HTML全文浏览量:  6
  • PDF下载量:  537
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-09
  • 录用日期:  2017-06-12
  • 刊出日期:  2018-04-20

目录

    /

    返回文章
    返回
    常见问答