留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

机电作动系统非指令振荡信号的故障影响分析

孙晓哲 杨珍书 杨建忠 王立宝

孙晓哲, 杨珍书, 杨建忠, 等 . 机电作动系统非指令振荡信号的故障影响分析[J]. 北京航空航天大学学报, 2018, 44(7): 1419-1429. doi: 10.13700/j.bh.1001-5965.2017.0529
引用本文: 孙晓哲, 杨珍书, 杨建忠, 等 . 机电作动系统非指令振荡信号的故障影响分析[J]. 北京航空航天大学学报, 2018, 44(7): 1419-1429. doi: 10.13700/j.bh.1001-5965.2017.0529
SUN Xiaozhe, YANG Zhenshu, YANG Jianzhong, et al. Failure effect analysis of uncommand oscillation signals in electromechanical actuation system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1419-1429. doi: 10.13700/j.bh.1001-5965.2017.0529(in Chinese)
Citation: SUN Xiaozhe, YANG Zhenshu, YANG Jianzhong, et al. Failure effect analysis of uncommand oscillation signals in electromechanical actuation system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(7): 1419-1429. doi: 10.13700/j.bh.1001-5965.2017.0529(in Chinese)

机电作动系统非指令振荡信号的故障影响分析

doi: 10.13700/j.bh.1001-5965.2017.0529
基金项目: 

中国民航大学科研启动基金 2011QD15X

大飞机重大专项 

详细信息
    作者简介:

    孙晓哲  女, 博士, 讲师。主要研究方向:飞控系统适航审定

    杨珍书  女, 硕士研究生。主要研究方向:机电作动系统建模及故障影响分析

    通讯作者:

    孙晓哲.E-mail:sxz_2002@163.com

  • 中图分类号: V242.4

Failure effect analysis of uncommand oscillation signals in electromechanical actuation system

Funds: 

Research Foundation of Civil Aviation University of China 2011QD15X

the Major Project of Large Aircraft 

More Information
  • 摘要:

    多电/全电飞机的发展使得机电作动系统(EMA)逐渐应用于飞机舵面的作动,其故障模式和故障影响问题是适航审查的重点。为解决机电作动系统中非指令振荡信号导致的故障模式及故障影响不明确的问题,分析了振荡信号的产生机理、产生位置及表现形式,对变频率、变幅值的振荡信号在机电作动系统中的故障传播和影响展开研究。结果表明:系统架构会改变振荡信号波形,传感器输出振荡信号对系统的故障影响最大,系统舵偏角输出与振荡信号同频率变化,且频率在0.2~3 Hz、8~10 Hz的振荡信号会引发电磁转矩与舵偏角不可接受的振荡,振荡信号幅值影响系统跟踪指令的速度。

     

  • 图 1  振荡信号产生位置

    Figure 1.  Oscillation signal generation position

    图 2  直线式机电作动系统结构

    Figure 2.  Structure of linear electromechanical actuation system

    图 3  机电作动系统舵偏角输出

    Figure 3.  Control surface deflection angle output of EMA

    图 4  机电作动系统电机转速

    Figure 4.  Motor speed of EMA

    图 5  机电作动系统输出转矩

    Figure 5.  Output torque of EMA

    图 6  电机转速对比

    Figure 6.  Comparison of motor speed

    图 7  液态故障

    Figure 7.  Liquid failure

    图 8  控制器输出端注入振荡信号

    Figure 8.  Controller output terminal injected with oscillation signal

    图 9  传感器输出端注入振荡信号

    Figure 9.  Sensor output terminal injected with oscillation signal

    图 10  驱动器输入端注入振荡信号

    Figure 10.  Motor driver input terminal injected with oscillation signal

    图 11  不同位置注入振荡信号后的电机转速

    Figure 11.  Motor speed after injecting oscillation signal in different positions

    图 12  不同位置注入振荡信号后的输出转矩

    Figure 12.  Output torque after injecting oscillation signal in different positions

    图 13  不同位置注入振荡信号后的舵偏角输出

    Figure 13.  Surface deflection angle output after injecting oscillation signal in different positions

    图 14  控制器输出变幅值振荡信号

    Figure 14.  Oscillation signal of varied amplitude injected in controller output

    图 15  传感器输出变幅值振荡信号

    Figure 15.  Oscillation signal of varied amplitude injected in sensor output

    图 16  控制器与传感器振荡信号故障影响比较

    Figure 16.  Comparison of oscillation signal failure effect between controller and sensor

    图 17  控制器输出变频率振荡信号

    Figure 17.  Oscillation signal of varied frequency injected in controller output

    图 18  传感器输出变频率振荡信号

    Figure 18.  Oscillation signal of varied frequency injected in sensor output

    图 19  机电作动系统舵偏角FFT

    Figure 19.  FFT of control surface deflection angle of EMA

    图 20  不同振荡信号频率对输出舵偏角的影响

    Figure 20.  Influence of different oscillation signal frequencies on output control surface deflection angle

    图 21  机电作动系统电磁转矩FFT

    Figure 21.  FFT of electromagnetic torque of EMA

    图 22  不同振荡信号频率对电磁转矩的影响

    Figure 22.  Influence of different oscillation signal frequency on electromagnetic torque

  • [1] CAO W, MECROW B C, ATKINSON G J, et al.Overview of electric motor technologies used for more electric aircraft (MEA)[J].IEEE Transactions on Industrial Electronics, 2012, 59(9):3523-3531. doi: 10.1109/TIE.2011.2165453
    [2] 王留呆.电传飞控系统舵面振荡故障检测的一种实现形式和符合性验证[J].科技信息, 2014(11):40. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjxx201411030

    WANG L D.An implementation and conformance verification of control surface oscillation fault detection in electronic flight control system[J].Science & Technology Information, 2014(11):40(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=kjxx201411030
    [3] GOUPIL P.Oscillatory failure case detection in the A380 electrical flight control system by analytical redundancy[J].Control Engineering Practice, 2010, 18(9):1110-1119. doi: 10.1016/j.conengprac.2009.04.003
    [4] 欧旭坡, 朱亮, 徐东光.民机飞控系统适航性设计与验证[M].上海:上海交通大学出版社, 2015:154-155.

    OU X P, ZHU L, XU D G.Airworthiness design and verification of civil aircraft flight control system[M].Shanghai:Shanghai Jiao Tong University Press, 2015:154-155(in Chinese).
    [5] OSSMANN D, VAN DER LINDEN F L J. Advanced sensor fault detection and isolation for electro-mechanical flight actuators[C]//NASA/ESA Conference on Adaptive Hardware and Systems (AHS). Piscataway, NJ: IEEE Press, 2015: 1-8.
    [6] BALABAN E, SAXENA A, NARASIMHAN S, et al. Experimental validation of a prognostic health management system for electro-mechanical actuators[C]//AIAA Infotech@Aerospace, St. Louis, Missouri. Reston: AIAA, 2013, 12: 329-344.
    [7] VINSON G, COMBACAU M, PRADO T.Synchronous machine faults detection and diagnosis for electro-mechanical actuators in aeronautics[J].IFAC Proceedings Volumes, 2012, 45(20):770-775. doi: 10.3182/20120829-3-MX-2028.00119
    [8] BORELLO L, VILLERO G, VEDOVA M D L D.Redundant hydraulic secondary flight control systems behavior in failure conditions[J].Mechanical Engineering and Automation, 2013, 32(8):499-506.
    [9] 邢琰, 吴宏鑫, 王晓磊, 等.航天器故障诊断与容错控制技术综述[J].宇航学报, 2003, 24(3):221-226. http://industry.wanfangdata.com.cn/hk/DetailCorrelated/Reference?id=yhxb201504012&title=%25e4%25b8%2580%25e7%25b1%25bb%25e9%259d%259e%25e7%25ba%25bf%25e6%2580%25a7%25e7%25b3%25bb%25e7%25bb%259f%25e7%259a%2584%25e6%2595%2585%25e9%259a%259c%25e5%258f%25af%25e8%25af%258a%25e6%2596%25ad%25e6%2580%25a7%25e9%2587%258f%25e5%258c%2596%25e8%25af%2584%25e4%25bb%25b7%25e6%2596%25b9%25e6%25b3%2595&resourceType=Periodical

    XING Y, WU H X, WANG X L, et al.Summary of fault diagnosis and fault-tolerant control technology of spacecraft[J].Acta Aeronautica Sinica, 2003, 24(3):221-226(in Chinese). http://industry.wanfangdata.com.cn/hk/DetailCorrelated/Reference?id=yhxb201504012&title=%25e4%25b8%2580%25e7%25b1%25bb%25e9%259d%259e%25e7%25ba%25bf%25e6%2580%25a7%25e7%25b3%25bb%25e7%25bb%259f%25e7%259a%2584%25e6%2595%2585%25e9%259a%259c%25e5%258f%25af%25e8%25af%258a%25e6%2596%25ad%25e6%2580%25a7%25e9%2587%258f%25e5%258c%2596%25e8%25af%2584%25e4%25bb%25b7%25e6%2596%25b9%25e6%25b3%2595&resourceType=Periodical
    [10] FAA, Special conditions. Airbus model A380-800 airplane: No. 25-316-SC[S]Washington, D. C. : Federal Aviation Administration, 2006.
    [11] FAA, Special conditions. Boeing model 777 series airplanes: No. 25-ANM-78[S]. Washington, D. C. : Federal Aviation Administration, 1993.
    [12] SACHS H, CARL U B, THIELECKE F. Impact of oscillatory failure cases in electro-hydraulic actuation systems on an aeroelastic aircraft: 2007-01-3902[R]. Hanburg: SAE Technical Paper, 2007.
    [13] LAVIGNE L, ZOLGHADRI A, GOUPIL P, et al. Robust and early detection of oscillatory failure case for new generation airbus aircraft[C]//AIAA Guidance, Navigation and Control Conference and Exhibit. Reston: AIAA, 2008, 98: 715-721.
    [14] URBANO S. Early and robust detection of oscillatory failure cases(OFC) in the flight control system: A data driven technique[C]//55th AIAA Aerospace Sciences Meeting. Reston: AIAA, 2017.
    [15] GAO Z, CECATI C, DING S X.A survey of fault diagnosis and fault-tolerant techniques-Part Ⅰ:Fault diagnosis with model-based and signal-based approaches[J].IEEE Transactions on Industrial Electronics, 2015, 62(6):3757-3767. doi: 10.1109/TIE.2015.2417501
    [16] HILL C I, BOZHKO S, YANG T, et al. More electric aircraft electro-mechanical actuator regenerated power management[C]//24th IEEE International Symposium on Industrial Electronics (ISIE). Piscataway, NJ: IEEE Press, 2015: 337-342.
    [17] 刘彬. 舵机用无刷直流电机控制系统研究[D]. 西安: 西北工业大学, 2004: 30-31.

    LIU B. Research on steering engine using brushless DC motor control system[D]. Xi'an: Northwestern Polytechnical University, 2004: 30-31(in Chinese).
    [18] 张仁嘉, 吴志刚, 杨超.电动伺服舵系统动力学建模及颤振分析[J].北京航空航天大学学报, 2016, 42(7):1368-1376. http://bhxb.buaa.edu.cn/CN/abstract/abstract13994.shtml

    ZHANG R J, WU Z G, YANG C.Dynamic modeling and flutter analysis of a fin-actuator system[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(7):1368-1376(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13994.shtml
    [19] KIM S. Modeling and fault analysis of BLDC motor based servo actuators for manipulators[C]//IEEE International Conference on Robotics and Automation. Piscataway, NJ: IEEE Press, 2008: 767-772.
    [20] 李璠, 毛海涛.飞机机电作动系统故障模式分析与故障诊断方法[J].航空维修与工程, 2016(3):47-50. http://www.cnki.com.cn/Article/CJFDTotal-KONG201603027.htm

    LI P, MAO H T.The method of failure mode analysis and diagnosis for aircraft electromechanical actuation system[J].Aviation Maintenance and Engineering, 2016(3):47-50(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-KONG201603027.htm
  • 加载中
图(22)
计量
  • 文章访问数:  355
  • HTML全文浏览量:  0
  • PDF下载量:  290
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-08-21
  • 录用日期:  2017-10-20
  • 刊出日期:  2018-07-20

目录

    /

    返回文章
    返回
    常见问答