留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下机械手不确定遥操作自适应双边控制

张建军 刘卫东 高立娥 李乐 李泽宇

张建军, 刘卫东, 高立娥, 等 . 水下机械手不确定遥操作自适应双边控制[J]. 北京航空航天大学学报, 2018, 44(9): 1918-1925. doi: 10.13700/j.bh.1001-5965.2017.0753
引用本文: 张建军, 刘卫东, 高立娥, 等 . 水下机械手不确定遥操作自适应双边控制[J]. 北京航空航天大学学报, 2018, 44(9): 1918-1925. doi: 10.13700/j.bh.1001-5965.2017.0753
ZHANG Jianjun, LIU Weidong, GAO Li'e, et al. Adaptive bilateral control for underwater manipulator in uncertainty teleoperation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1918-1925. doi: 10.13700/j.bh.1001-5965.2017.0753(in Chinese)
Citation: ZHANG Jianjun, LIU Weidong, GAO Li'e, et al. Adaptive bilateral control for underwater manipulator in uncertainty teleoperation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 1918-1925. doi: 10.13700/j.bh.1001-5965.2017.0753(in Chinese)

水下机械手不确定遥操作自适应双边控制

doi: 10.13700/j.bh.1001-5965.2017.0753
基金项目: 

国家自然科学基金 61473224

国家重点研发计划 2016YFC0301700

中央高校基本科研业务费专项资金 3102017OQD069

详细信息
    作者简介:

    张建军  男, 博士研究生。主要研究方向:基于力觉感知的水下机械手遥操作

    刘卫东  男, 博士, 教授, 博士生导师。主要研究方向:水下航行器控制与仿真

    通讯作者:

    刘卫东, E-mail: liuwd@nwpu.edu.cn

  • 中图分类号: TP242

Adaptive bilateral control for underwater manipulator in uncertainty teleoperation

Funds: 

National Natural Science Foundation of China 61473224

National Key R&D Program of China 2016YFC0301700

the Fundamental Research Funds for the Central Universities 3102017OQD069

More Information
  • 摘要:

    针对水下机械手遥操作过程中数学模型及外部干扰引起不确定问题提出了自适应双边控制策略。对主机械手模型参数与外部干扰引起的不确定,设计了基于名义模型的参考自适应阻抗控制律,根据主手力与从手力误差来调节期望模型的参考位置,利用自适应控制律补偿模型不确定性。针对从机械手的不确定性采用径向基函数(RBF)神经网络进行自适应补偿,通过设计滑模变结构控制器与鲁棒自适应控制器消除逼近误差,满足了从机械手对主机械手位置跟踪。设计了李雅普诺夫函数证明跟踪性能与全局稳定性,保证力-位置跟踪的渐进收敛性能。结果表明:整体控制在模型不确定及外部干扰条件下具有很好的力-位置跟踪能力,整体系统具有稳定性和可靠性,并且具有鲁棒性及自适应控制能力。

     

  • 图 1  遥操作机械手整体示意图

    Figure 1.  Overall schematic diagram of manipulator in teleoperation

    图 2  主手模型参考自适应阻抗控制结构

    Figure 2.  Structure of master manipulator model reference adaptive impedance control

    图 3  从机械手控制结构

    Figure 3.  Control structure of slave manipulator

    图 4  遥操作机械手力跟踪曲线

    Figure 4.  Force tracking curves of manipulator in teleoperation

    图 5  遥操作参考位置、主手、从手位置跟踪曲线

    Figure 5.  Tracking curves of reference position and position of master and slave manipulator in teleoperation

    图 6  遥操作主从手角度跟踪曲线

    Figure 6.  Angle tracking curves of master and slave manipulator in teleoperation

    图 7  主手自适应律曲线

    Figure 7.  Curves of master manipulator adaptive law

    图 8  从手自适应律曲线

    Figure 8.  Curve of slave manipulator adaptive law

  • [1] LI Y, JOHANSSON R, LIU K, et al.Guaranteed cost control design for delayed teleoperation systems[J].Journal of the Franklin Institute, 2015, 352(11):5085-5105. doi: 10.1016/j.jfranklin.2015.08.011
    [2] 贾鹤鸣, 张利军, 齐雪, 等.基于神经网络的水下机器人三维航迹跟踪控制[J].控制理论与应用, 2012, 29(7):56-62. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201207007

    JIA H M, ZHANG L J, QI X, et al.Three-dimensional path tracking control for autonomous underwater vehicle based on neural network[J].Control Theory & Applications, 2012, 29(7):56-62(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201207007
    [3] WANG H, XIE Y.Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics[J].Automatica, 2009, 45(9):2114-2119. doi: 10.1016/j.automatica.2009.05.011
    [4] 张文辉, 齐乃明, 尹洪亮.基于滑模变结构的空间机器人神经网络跟踪控制[J].控制理论与应用, 2011, 28(9):1141-1144. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101961448

    ZHANG W H, QI N M, YIN H L.Neural-network tracking control of space robot based on sliding-mode variable structure[J].Control Theory & Applications, 2011, 28(9):1141-1144(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201101961448
    [5] GANJEFAR S, REZAEI S, HASHEMZADEH F.Position and force tracking in nonlinear teleoperation systems with sandwich linearity in actuators and time-varying delay[J].Mechanical Systems and Signal Processing, 2017, 86:308-324. doi: 10.1016/j.ymssp.2016.09.023
    [6] LIU Y C, KHONG M H.Adaptive control for nonlinear teleoperators with uncertain kinematics and dynamics[J].IEEE/ASME Transactions on Mechatronics, 2015, 20(5):2550-2562. doi: 10.1109/TMECH.2015.2388555
    [7] HOSSEINI S K, MOMENI H, JANABI S F, et al.A modified adaptive controller design for teleoperation systems[J].Robotics and Autonomous Systems, 2010, 58(5):676-683. doi: 10.1016/j.robot.2009.11.006
    [8] LIU X, TAVAKOLI M.Adaptive control of teleoperation systems with linearly and nonlinearly parameterized dynamic uncertainties[J].Journal of Dynamic Systems Measurement & Control, 2012, 134(2):194-203. http://cn.bing.com/academic/profile?id=a978f9bc6dbd2f71d080c1d2e2d69b86&encoded=0&v=paper_preview&mkt=zh-cn
    [9] CHOPRA N, SPONG M W, LOZANO R.Synchronization of bilateral teleoperators with time delay[J].Automatica, 2008, 44(8):2142-2148. doi: 10.1016/j.automatica.2007.12.002
    [10] NUN~O E, SARRAS I, BASAN~EZ L, et al.Control of teleoperators with joint flexibility, uncertain parameters and time-delays[J].Robotics and Autonomous Systems, 2014, 62(12):1691-1701. doi: 10.1016/j.robot.2014.08.003
    [11] HUA C C, YANG Y, GUAN X.Neural network-based adaptive position tracking control for bilateral teleoperation under constant time delay[J].Neuro Computing, 2013, 113(7):204-212. http://cn.bing.com/academic/profile?id=88c2b90e2171357ff8ee1b998d788f3c&encoded=0&v=paper_preview&mkt=zh-cn
    [12] WANG H.Passivity based synchronization for networked robotic systems with uncertain kinematics and dynamics[J].Automatica, 2013, 49(3):755-761. doi: 10.1016/j.automatica.2012.11.003
    [13] KIM B Y, AHN H S.A design of bilateral teleoperation systems using composite adaptive controller[J].Control Engineering Practice, 2013, 21(12):1641-1652. doi: 10.1016/j.conengprac.2013.08.013
    [14] SHARIFI M, BEHZADIPOUR S, VOSSOUGHI G.Nonlinear model reference adaptive impedance control for human-robot interactions[J].Control Engineering Practice, 2014, 32:9-27. doi: 10.1016/j.conengprac.2014.07.001
    [15] MENDOZA M, BONILLA I, GONZÁLEZ-GALVÁN E, et al.Impedance control in a wave-based teleoperator for rehabilitation motor therapies assisted by robots[J].Computer Methods & Programs in Biomedicine, 2016, 123(C):54-67. http://cn.bing.com/academic/profile?id=96154a9b9fe00c9cfb07ede3a78f1c07&encoded=0&v=paper_preview&mkt=zh-cn
    [16] SHARIFI M, BEHZADIPOUR S, VOSSOUGHI G R.Model reference adaptive impedance control of rehabilitation robots in operational space[C]//IEEE Ras & Embs International Conference on Biomedical Robotics and Biomechatronics.Piscataway, NJ: IEEE Press, 2012: 1698-1703.
    [17] HSU C F, LIN C M, YEH R G.Supervisory adaptive dynamic RBF-based neural-fuzzy control system design for unknown nonlinear systems[J].Applied Soft Computing Journal, 2013, 13(4):1620-1626. doi: 10.1016/j.asoc.2012.12.028
    [18] PAN Y, YU H, ER M J.Adaptive neural PD control with semiglobal asymptotic stabilization guarantee[J].IEEE Transactions on Neural Networks & Learning Systems, 2014, 25(12):2264-2274. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0234920002
    [19] LONDHE P S, MOHAN S, PATRE B M, et al.Robust task-space control of an autonomous underwater vehicle-manipulator system by PID-like fuzzy control scheme with disturbance estimator[J].Ocean Engineering, 2017, 139:1-13. doi: 10.1016/j.oceaneng.2017.04.030
    [20] 张文辉, 齐乃明, 尹洪亮.自适应神经变结构的机器人轨迹跟踪控制[J].控制与决策, 2011, 26(4):597-600. http://d.old.wanfangdata.com.cn/Periodical/kzyjc201104021

    ZHANG W H, QI N M, YIN H L.Neural-variable structure-based adaptive trajectory tracking control of robot manipulators[J].Control and Decision, 2011, 26(4):597-600(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzyjc201104021
  • 加载中
图(8)
计量
  • 文章访问数:  377
  • HTML全文浏览量:  11
  • PDF下载量:  437
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-05
  • 录用日期:  2018-03-16
  • 刊出日期:  2018-09-20

目录

    /

    返回文章
    返回
    常见问答