留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于薄板样条函数的电磁定位系统位姿校正方法

关少亚 孟偲 万元宇 贾佳 王田苗 郑莉芳

关少亚, 孟偲, 万元宇, 等 . 基于薄板样条函数的电磁定位系统位姿校正方法[J]. 北京航空航天大学学报, 2018, 44(11): 2350-2355. doi: 10.13700/j.bh.1001-5965.2018.0162
引用本文: 关少亚, 孟偲, 万元宇, 等 . 基于薄板样条函数的电磁定位系统位姿校正方法[J]. 北京航空航天大学学报, 2018, 44(11): 2350-2355. doi: 10.13700/j.bh.1001-5965.2018.0162
GUAN Shaoya, MENG Cai, WAN Yuanyu, et al. A thin plate spline based method for correction of position and posture of electromagnetic tracking system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2350-2355. doi: 10.13700/j.bh.1001-5965.2018.0162(in Chinese)
Citation: GUAN Shaoya, MENG Cai, WAN Yuanyu, et al. A thin plate spline based method for correction of position and posture of electromagnetic tracking system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2350-2355. doi: 10.13700/j.bh.1001-5965.2018.0162(in Chinese)

基于薄板样条函数的电磁定位系统位姿校正方法

doi: 10.13700/j.bh.1001-5965.2018.0162
基金项目: 

国家自然科学基金 61533016

详细信息
    作者简介:

    关少亚  女,博士研究生。主要研究方向:医疗机器人导航系统

    孟偲  男,博士,副教授。主要研究方向:机器视觉、机器人智能系统

    通讯作者:

    孟偲, E-mail:tsai@buaa.edu.cn

  • 中图分类号: TP242.3

A thin plate spline based method for correction of position and posture of electromagnetic tracking system

Funds: 

National Natural Science Foundation of China 61533016

More Information
  • 摘要:

    电磁定位系统(EM)凭借其精度高、反应灵活、操作简便、价格便宜以及无遮挡效应等优点,被广泛应用于各种需要进行跟踪定位的领域。在介入手术中,EM可以很好地解决因人体组织对介入器械的遮挡而无法进行精确光学定位的问题,能够对介入器械的位姿进行精确定位。但EM是通过电磁感应原理对介入器械进行跟踪定位,因此手术环境中存在的铁磁性物质产生的干扰磁场会导致EM的磁场产生畸变,从而影响其定位精度。对EM的定位原理进行了分析,通过分析EM受干扰前后传感器在相同位置的位姿变化,提出一种基于薄板样条函数的电磁定位系统校正方法,对EM受干扰后的位姿进行校正,并通过实验验证该方法的有效性。

     

  • 图 1  NDI Aurora电磁跟踪系统组成

    Figure 1.  Composition of NDI Aurora electromagnetic tracking system

    图 2  同一平面不同干扰位置实验设计

    Figure 2.  Experimental design of interference in different positions on the same plane

    图 3  同一干扰位置空间校正实验设计

    Figure 3.  Experimental design of correction in space for the same interference position

    图 4  同一平面不同干扰位置校正前后位置及姿态误差对比

    Figure 4.  Comparison of position and posture errors before and after correction of different interference positions on the same plane

    图 5  同一干扰位置空间校正前后位姿误差分布统计

    Figure 5.  Statistics of position and posture error distribution before and after correction in space for the same interference position

    表  1  同一平面不同干扰源校正结果

    Table  1.   Correction results of different interferences on the same plane

    干扰位置 Δx/mm Δy/mm Δz/mm Δα/(°) Δβ/(°) Δγ/(°) RMSt/mm RMSr/(°)
    A(校正前) 2.210 1.906 6.414 5.977 1.739 4.752 7.533 8.147
    A(校正后) 0.715 0.841 0.604 0.872 0.862 0.838 1.447 1.642
    B(校正前) 7.730 4.542 3.215 3.826 3.158 2.154 9.913 5.873
    B(校正后) 0.697 0.995 0.909 0.845 1.615 0.889 1.665 2.136
    C(校正前) 0.697 1.824 1.560 2.191 2.538 1.690 2.661 4.010
    C(校正后) 0.383 1.209 0.765 1.722 1.019 0.755 1.708 2.356
    D(校正前) 1.607 0.534 1.204 0.897 1.081 1.723 2.157 2.383
    D(校正后) 0.317 0.177 0.420 0.368 0.564 0.445 0.604 0.901
    下载: 导出CSV

    表  2  同一干扰源空间校正结果

    Table  2.   Correction results of the same interference in space

    校正前后 Δx/mm Δy/mm Δz/mm Δα/(°) Δβ/(°) Δγ/(°) RMSt/mm RMSr/(°)
    校正前 7.910 3.046 3.328 3.074 2.932 2.398 9.602 5.577
    校正后 1.024 0.772 1.331 1.889 1.182 1.782 2.184 3.042
    下载: 导出CSV
  • [1] FRANZ A M, HAIDEGGER T, BIRKFELLNER W, et al.Electromagnetic tracking in medicine:A review of technology, validation, and applications[J].IEEE Transactions on Medical Imaging, 2014, 33(8):1702-1725. doi: 10.1109/TMI.2014.2321777
    [2] BIRKFELLNER W, WATZINGER F, WANSCHITZ F, et al.Calibration of tracking systems in a surgical environment[J].IEEE Transactions on Medical Imaging, 1998, 17(5):737-742. doi: 10.1109/42.736028
    [3] PÉRIÉ D, TATE A J, CHENG P L, et al.Evaluation and calibration of an electromagnetic tracking device for biomechanical analysis of lifting tasks[J].Journal of Biomechanics, 2002, 35(2):293-297. doi: 10.1016/S0021-9290(01)00188-9
    [4] FEUERSTEIN M, REICHL T, VOGEL J, et al.Magneto-optical tracking of flexible laparoscopic ultrasound:Model-based online detection and correction of magnetic tracking errors[J].IEEE Transactions on Medical Imaging, 2009, 28(6):951-967. doi: 10.1109/TMI.2008.2008954
    [5] SHAHRIARI N, HEKMAN E, OUDKERK M, et al.Design and evaluation of a computed tomography(CT)-compatible needle insertion device using an electromagnetic tracking system and CT images[J].International Journal of Computer Assisted Radiology & Surgery, 2015, 10(11):1-8. doi: 10.1007/s11548-015-1176-3
    [6] HARISH V, BAKSH A, UNGI T, et al.Measurement of electromagnetic tracking error in a navigated breast surgery setup[C]//Medical Imaging 2016: Image-Guided Procedures, Robotic Interventions, and Modeling.Bellingham: International Society for Optics and Photonics, 2016: 1-8. https://www.researchgate.net/publication/301257823_Measurement_of_electromagnetic_tracking_error_in_a_navigated_breast_surgery_setup
    [7] LUND K T, TANGEN G A, MANSTAD H F.Electromagnetic navigation versus fluoroscopy in aortic endovascular procedures:A phantom study[J].International Journal of Computer Assisted Radiology & Surgery, 2016, 12(1):1-7. http://www.ncbi.nlm.nih.gov/pubmed/27492068
    [8] VILLAGRAN C R T, IKEDA S, FUKUDA T, et al.Catheter insertion path reconstruction with autonomous system for endovascular surgery[C]//Computational Intelligence in Robotics and Automation, 2007.Piscataway, NJ: IEEE Press, 2007: 398-403. https://www.researchgate.net/publication/4259969_Catheter_insertion_path_reconstruction_with_autonomous_system_for_endovascular_surgery
    [9] TERCERO C, IKEDA S, UCHIYAMA T, et al.Autonomous catheter insertion system using magnetic motion capture sensor for endovascular surgery[J].The International Journal of Medical Robotics and Computer Assisted Surgery, 2007, 3(1):52-58. doi: 10.1002/(ISSN)1478-596X
    [10] FU Y L, GAO A, LIU H, et al.The master-slave catheterisation system for positioning the steerable catheter[J].International Journal of Mechatronics and Automation, 2011, 1(3-4):143-152. doi: 10.1504/IJMA.2011.045271
    [11] LIU H, FU Y L, ZHOU Y Y, et al.An in vitro investigation of image-guided steerable catheter navigation[J].Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine, 2010, 224(8):945-954. doi: 10.1243/09544119JEIM730
    [12] FISCHER G S, TAYLOR R H.Electromagnetic tracker measurement error simulation and tool design[C]//International Conference on Medical Image Computing and Computer-Assisted Intervention.Berlin: Springer, 2005: 73-80. doi: 10.1007%2F11566489_10
    [13] IKITS M, BREDERSON J D, HANSEN C D, et al.An improved calibration framework for electromagnetic tracking devices[C]//Proceedings IEEE Virtual Reality 2001.Piscataway, NJ: IEEE Press, 2001: 63-70. https://www.researchgate.net/publication/3890676_An_Improved_Calibration_Framework_for_Electromagnetic_Tracking_Devices
    [14] TRAUB J, KAUR S, KNESCHAUREK P, et al.Evaluation of electromagnetic error correction methods[C]//Bildverarbeitung Für Die Medizin 2007.Berlin: Springer, 2007: 363-367. doi: 10.1007%2F978-3-540-71091-2_73
    [15] HIMBERG H, MOTAI Y, BRADLEY A.Interpolation volume calibration:A multisensor calibration technique for electromagnetic trackers[J].IEEE transactions on Robotics, 2012, 28(5):1120-1130. doi: 10.1109/TRO.2012.2198929
    [16] BOUTALEB S, RACINE E, FILLION O, et al.Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy[J].Journal of Contemporary Brachytherapy, 2015, 7(4):280-289. http://europepmc.org/articles/PMC4643737/
    [17] KWARTOWITZ D M, RETTMANN M E, HOLMES D R, et al.A novel technique for analysis of accuracy of magnetic tracking systems used in image guided surgery[C]//Medical Imaging 2010: Visualization, Image-Guided Procedures, and Modeling.International Society for Optics and Photonics.San Diego: SPIE Medical Imaging, 2010: 1-8. https://www.researchgate.net/publication/241542310_A_novel_technique_for_analysis_of_accuracy_of_magnetic_tracking_systems_used_in_image_guided_surgery
    [18] GERGEL I, GAA J, MVLLER M, et al.A novel fully automatic system for the evaluation of electromagnetic tracker[C]//Medical Imaging 2012: Image-Guided Procedures, Robotic Interventions, and Modeling.International Society for Optics and Photonics.San Diego: SPIE Medical Imaging, 2012: 1-10. https://www.researchgate.net/publication/258713829_A_novel_fully_automatic_system_for_the_evaluation_of_electromagnetic_tracker
    [19] ATUEGWU N C, GALLOWAY R L.Volumetric characterization of the Aurora magnetic tracker system for image-guided transorbital endoscopic procedures[J].Physics in Medicine & Biology, 2008, 53(16):4355-4368. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b89402ae968ae71be661e4ac0e29b8ab
    [20] BOOKSTEIN F L.Principal warps:Thin-plate splines and the decomposition of deformations[J].IEEE Transactions on Pattern Analysis & Machine Intelligence, 2002, 11(6):567-585. doi: 10.1109/34.24792
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  314
  • HTML全文浏览量:  5
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-03-27
  • 录用日期:  2018-05-25
  • 刊出日期:  2018-11-20

目录

    /

    返回文章
    返回
    常见问答