留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航空发动机转子结构布局优化设计方法

李超 金福艺 张卫浩

李超, 金福艺, 张卫浩等 . 航空发动机转子结构布局优化设计方法[J]. 北京航空航天大学学报, 2019, 45(2): 266-276. doi: 10.13700/j.bh.1001-5965.2018.0277
引用本文: 李超, 金福艺, 张卫浩等 . 航空发动机转子结构布局优化设计方法[J]. 北京航空航天大学学报, 2019, 45(2): 266-276. doi: 10.13700/j.bh.1001-5965.2018.0277
LI Chao, JIN Fuyi, ZHANG Weihaoet al. Optimized design method of aero-engine rotor structure layout[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 266-276. doi: 10.13700/j.bh.1001-5965.2018.0277(in Chinese)
Citation: LI Chao, JIN Fuyi, ZHANG Weihaoet al. Optimized design method of aero-engine rotor structure layout[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 266-276. doi: 10.13700/j.bh.1001-5965.2018.0277(in Chinese)

航空发动机转子结构布局优化设计方法

doi: 10.13700/j.bh.1001-5965.2018.0277
详细信息
    作者简介:

    李超  男, 博士, 讲师。主要研究方向:航空发动机结构设计、智能结构动力学与控制

    金福艺  男, 硕士研究生。主要研究方向:航空发动机转子动力学

    张卫浩  男, 硕士研究生。主要研究方向:航空发动机静子结构承力系统设计

    通讯作者:

    李超, E-mail: lichao7715@163.com

  • 中图分类号: V232.2

Optimized design method of aero-engine rotor structure layout

More Information
  • 摘要:

    结构是航空发动机功能、性能及可靠性设计水平的综合体现,一切技术要求、性能指标、强度指标或者结构的安全性和可靠性都应建立在合理的结构布局设计上。提出了航空发动机转子结构布局并对其进行优化设计的观点,同时以典型高推重比涡扇发动机高压转子的结构构型为例,基于试验设计(DOE)的响应面法,应用有限元计算并通过多目标遗传优化算法,分别从抗变形能力、力学环境适应能力以及转子结构效率综合进行相关优化计算,论证了合理的结构布局形式可以大幅度提升转子的力学特性。研究方法对于航空发动机转子系统的初始结构布局设计具有指导意义,可以显著减少结构设计的迭代次数,缩短设计周期。

     

  • 图 1  典型转子结构

    Figure 1.  Typical rotor structure

    图 2  有限元模型

    Figure 2.  Finite element model

    图 3  布局尺寸

    Figure 3.  Layout size

    图 4  结构布局优化设计方法流程

    Figure 4.  Flow of structure layout optimization design method

    图 5  抗变形能力优化参数关联性云图

    Figure 5.  Contour of parameter correlation about anti-deforming ability optimization

    图 6  抗变形能力优化响应面

    Figure 6.  Response surface of anti-deforming ability optimization

    图 7  抗变形能力优化前后对比

    Figure 7.  Comparison of results before and after anti-deforming ability optimization

    图 8  力学环境适应能力优化参数关联性云图

    Figure 8.  Contour of parameter correlation about mechanical environment adaptability optimization

    图 9  力学环境适应能力优化响应面

    Figure 9.  Response surface of mechanical environment adaptability optimization

    图 10  力学环境适应能力优化前后对比

    Figure 10.  Comparison of results before and after mechanical environment adaptability optimization

    图 11  拟合响应面

    Figure 11.  Fitting response surface

    图 12  优化前后结构总体变形

    Figure 12.  Overall structure deformation before and after optimization

    表  1  支承刚度

    Table  1.   Supporting stiffness

    107 N/m
    支点 刚度
    前支点 2.5
    后支点 25
    下载: 导出CSV

    表  2  待优化的原始构型参数

    Table  2.   Original configuration parameters for subsequent optimization

    参数 数值
    A1/(°) 56.2
    A2/(°) 38.5
    R1/mm 12.1
    R2/mm 112.2
    下载: 导出CSV

    表  3  抗变形能力优化相关性矩阵

    Table  3.   Correlation matrix of anti-deforming ability optimization

    参数 R2 R1 A2 A1 TD_Max TM
    R2 1 0.006 8 -0.01 0.041 418 -0.017 436 -0.155
    R1 -0.006 80 1 0.007 8 0.095 346 0.010 111 -0.144
    A2 -0.014 19 0.007 8 1 -0.010 88 0.998 7 -0.954
    A1 0.041 418 0.095 3 -0.01 1 -0.001 296 3 0.094 6
    TD_Max -0.017 43 0.010 1 0.998 -0.001 29 1 -0.953
    TM -0.155 04 -0.145 -0.95 0.094 633 -0.953 4 1
    下载: 导出CSV

    表  4  抗变形能力响应面误差验证

    Table  4.   Error verification of response surface of anti-deforming ability

    编号 优化变量 验证点(有限元计算) 响应点(响应面计算) 相对误差/%
    A1/(°) A2/(°) TD_Max/mm TM/kg TD_Max/mm TM/kg TD_Max TM
    1 61.162 40.402 0.019 226 340.94 0.019 409 347.24 0.95 1.8
    2 58.68 40.591 0.019 436 336.93 0.019 601 341.92 0.85 1.5
    3 52.027 39.633 0.018 195 343.12 0.018 297 351.98 0.56 2.6
    4 52.043 41.095 0.020 178 335.41 0.020 183 340.56 0.02 1.5
    5 57.758 39.611 0.018 13 350.49 0.018 293 355.54 0.90 1.4
    下载: 导出CSV

    表  5  抗变形能力优化设计结果

    Table  5.   Design results of anti-deforming ability optimization

    编号 优化变量 验证点(有限元计算) 响应点(响应面计算) 相对误差/%
    A1/(°) A2/(°) TD_Max/mm TM/kg TD_Max/mm TM/kg TD_Max TM
    1 51.278 38.531 0.016 908 345.57 0.016 859 346.91 0.29 0.4
    2 57.409 37.955 0.016 546 361.77 0.016 267 350.65 1.69 3.1
    3 50.646 37.806 0.016 264 360.55 0.016 174 351.24 0.55 2.6
    下载: 导出CSV

    表  6  力学环境适应能力优化相关性矩阵

    Table  6.   Correlation matrix of mechanical environment adaptability optimization

    参数 R2 R1 A2 A1 TD_Max TM C_S
    R2 1 0.024 -0.050 0.000 6 -0.372 73 -0.17 0.050 649
    R1 0.024 1 0.003 8 -0.012 -0.128 57 0.175 -0.129 87
    A2 -0.05 0.003 1 -0.007 -0.589 61 -0.94 -0.961 04
    A1 0.006 -0.01 -0.007 1 -0.463 64 0.042 -0.171 43
    TD_Max -0.37 -0.12 -0.589 -0.463 1 0.679 0.703 9
    TM -0.17 0.175 -0.949 0.042 8 0.679 22 1 0.927 27
    C_S 0.051 -0.13 -0.961 -0.171 0.703 9 0.927 1
      注:C_S—临界转速。
    下载: 导出CSV

    表  7  力学环境适应能力响应面误差验证

    Table  7.   Error verification of response surface of mechanical environment adaptability

    编号 优化变量 验证点(有限元计算) 响应点(响应面计算) 相对误差/%
    A1/(°) A2/(°) TD_Max/mm TM/kg C_S/(r·min-1) TD_Max/mm TM/kg C_S/(r·min-1) TD_Max TM C_S
    1 52.929 36.22 2.144 6 353.95 14 543 2.154 8 350.05 14 769 0.48 1.10 1.55
    2 52.953 40.724 2.175 4 342.91 13 536 2.142 2 339.45 13 812 1.53 1.01 2.04
    3 59.483 36.251 2.103 8 354.49 14 146 2.123 4 351.71 14 555 0.93 0.78 2.89
    4 59.015 40.384 2.185 5 344.37 13 391 2.110 5 341.85 13 672 3.43 0.73 2.10
    5 50.621 40.172 2.113 343.94 14 662 2.186 341.87 14 255 3.45 0.60 2.78
    下载: 导出CSV

    表  8  力学环境适应能力优化设计结果

    Table  8.   Design results of mechanical environment adaptability optimization

    编号 优化变量 验证点(有限元计算) 响应点(响应面计算) 相对误差/%
    A1/(°) A2/(°) TD_Max/mm TM/kg C_S/(r·min-1) TD_Max/mm TM/kg C_S/(r·min-1) TD_Max TM C_S
    1 60.774 42.296 2.135 7 340.04 13 620 2.013 2 338.79 13 342 5.7 0.37 2.04
    2 59.369 42.266 2.124 1 339.97 13 662 2.019 8 338.29 13 335 4.91 0.49 2.39
    3 56.195 41.615 2.159 7 341.37 14 307 2.080 6 343 14 569 3.66 0.48 1.83
    下载: 导出CSV

    表  9  参数关联性矩阵

    Table  9.   Parameter correlation matrix

    参数 A1 A2 R1 R2 TD_Max
    A1 1 0.275 -0.028 6 -0.125 0.214 286
    A2 0.275 1 -0.032 1 -0.003 5 0.785 71
    R1 -0.028 571 -0.032 143 1 -0.171 4 0.203 57
    R2 -0.125 -0.003 571 -0.171 4 1 -0.046 42
    TD_Max -0.214 286 0.785 71 0.203 57 -0.046 4 1
    下载: 导出CSV
  • [1] 郑华强, 彭刚, 马艳红, 等.航空发动机结构力学性能定量分析方法[J].推进技术, 2018, 39(3):645-652. http://d.old.wanfangdata.com.cn/Periodical/tjjs201803019

    ZHENG H Q, PENG G, MA Y H, et al.Quantitative analysis method for mechanical characteristics of structure system in aero-engine[J].Journal of Propulsion Technology, 2018, 39(3):645-652(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjjs201803019
    [2] ARNE S, JULIAN B, SASCHA K, et al.Conceptual investigation of a propulsive fuselage aircraft layout[J].Aircraft Engineering and Aerospace Technology, 2014, 86(6):464-472. doi: 10.1108/AEAT-06-2014-0079
    [3] LUO Q, WEN Z H.Application of garden design style in Tang dynasty to the design of modern city public gardens:A case study of Tang paradise[J].Journal of Landscape Research, 2018, 10(2):11-14. http://www.cnki.com.cn/Article/CJFDTotal-JLDR201802003.htm
    [4] LIU S, QIAO H.Topology optimization of continuum structures with different tensile and compressive properties in bridge layout design[J].Structure and Multidisciplinary Optimization, 2011, 43(3):369-380. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=99eb13f3c24e0c84023147e8b05ac2b7
    [5] GUTTA P R, CHITHALA V S, MANCHOJU R V, et al.A review on facility layout design of an automated guided vehicle in flexible manufacturing system[J].Materialstoday:Proceedings, 2018, 05(2):3981-3986. http://www.sciencedirect.com/science/article/pii/S2214785317329292
    [6] WANG Y K, LIAO M F, ZHANG J H.Dynamic load reduction design for inter-shaft bearing of aircraft engine[J].Journal of Aerospace Power, 2017, 32(2):492-499. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201702030
    [7] FU C, REN X M, YANG Y F, et al.An interval precise integration method for transient unbalance response analysis of rotor system with uncertainty[J].Mechanical System and Signal Processing, 2018, 107:137-148. doi: 10.1016/j.ymssp.2018.01.031
    [8] WHANG C, CHOY K L, BACK J.Development and experimental vertification of counter-rotating dual rotor/dual generator wind turbine:Generating, yawing and furling[J].Renewable Energy, 2017, 114(B):644-654.
    [9] 刘子君.统计学[M].北京:清华大学出版社, 2017:148-156.

    LIU Z J.Statics[M].Beijing:Tsinghua University Press, 2017:148-156(in Chinese).
    [10] 鹏翔.复杂产品设计中参数关联和等效简化方法激起应用[D].杭州: 浙江大学, 2014: 92-145.

    PENG X.Method and its application of parameter correlation and equivalent simplification in complex product design[D].Hangzhou: Zhejiang Uiversity, 2014: 92-145(in Chinese).
    [11] 闵亚能.试验设计(DOE)应用指南[M].北京:机械工业出版社, 2011:5-17.

    MIN Y N.Application guide of DOE[M].Beijing:China Machine Press, 2011:5-17(in Chinese).
    [12] XIONG F F, XIONG Y, GREENE S, et al.A new sparse grid based method for uncertainty propagation[C]//International Design Engineering Conference & Computers and Information in Engineering Conference.New York: ASME, 2009: 1-11.
    [13] FERREIRA S L C, BRUNS R E, MATOS G D, et al.Box-Behnken design:An alternative for the optimization of analytical methods[J].Analytica Chimica Acta, 2007, 597(2):179-186. doi: 10.1016/j.aca.2007.07.011
    [14] 文放怀.田口方法[M].广州:广东经济出版社, 2006:43-101.

    WEN F H.Taguchi method[M].Guangzhou:Guangdong Economic Press, 2006:43-101(in Chinese).
    [15] HELTON J C, DAVIS F J.Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems[J].Reliability Engineering & System Safety, 2003, 81(1):23-69. http://www.sciencedirect.com/science/article/pii/S0951832003000589
    [16] 马艳红, 陈璐璐, 张大义, 等.航空发动机转子系统结构效率评估参数及计算方法[J].航空动力学报, 2013, 28(7):1598-1606. http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201307021

    MA Y H, CHEN L L, ZHANG D Y, et al.Assessment parameters and calculation methods of structural efficiency on rotor system in aero engine[J].Journal of Aerospace Power, 2013, 28(7):1598-1606(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkdlxb201307021
    [17] OSCAR L, OLVERA A, BRUNO D.Population models and simulation methods:The case of the spearman rank correlation[J].Mzthematical and Statistical Psychology, 2017, 70(6):347-367. http://www.ncbi.nlm.nih.gov/pubmed/28140458
    [18] 玄光男.遗传算法与工程优化[M].北京:清华大学出版社, 2004:76-88.

    XUAN G N.Genetic algorithm and engineering optimization[M].Beijing:Tsinghua University Press, 2004:76-88(in Chinese).
    [19] 左益.基于全局优化和局部学习的进化多目标优化算法[D].西安: 西安电子科技大学, 2016: 29-47.

    ZUO Y.Evolutionary multi-objective algorithms based on global optimization and local learning[D].Xi'an: Xidian University, 2016: 29-47(in Chinese).
  • 加载中
图(12) / 表(9)
计量
  • 文章访问数:  415
  • HTML全文浏览量:  3
  • PDF下载量:  357
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-16
  • 录用日期:  2018-08-10
  • 刊出日期:  2019-02-20

目录

    /

    返回文章
    返回
    常见问答