留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

考虑几何非线性的气动弹性模型缩比方法

柴睿 谭申刚 黄国宁

柴睿, 谭申刚, 黄国宁等 . 考虑几何非线性的气动弹性模型缩比方法[J]. 北京航空航天大学学报, 2019, 45(4): 743-751. doi: 10.13700/j.bh.1001-5965.2018.0419
引用本文: 柴睿, 谭申刚, 黄国宁等 . 考虑几何非线性的气动弹性模型缩比方法[J]. 北京航空航天大学学报, 2019, 45(4): 743-751. doi: 10.13700/j.bh.1001-5965.2018.0419
CHAI Rui, TAN Shengang, HUANG Guoninget al. Scaling method of aeroelastic model considering geometric nonlinearity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 743-751. doi: 10.13700/j.bh.1001-5965.2018.0419(in Chinese)
Citation: CHAI Rui, TAN Shengang, HUANG Guoninget al. Scaling method of aeroelastic model considering geometric nonlinearity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(4): 743-751. doi: 10.13700/j.bh.1001-5965.2018.0419(in Chinese)

考虑几何非线性的气动弹性模型缩比方法

doi: 10.13700/j.bh.1001-5965.2018.0419
详细信息
    作者简介:

    柴睿  男, 硕士, 助理工程师。研究方向:飞机气动弹性设计

    谭申刚  男, 博士, 研究员。研究方向:飞机结构强度设计

    黄国宁  男, 硕士, 研究员。研究方向:飞机气动弹性设计

    通讯作者:

    柴睿, E-mail: 584557071@qq.com

  • 中图分类号: V215.3

Scaling method of aeroelastic model considering geometric nonlinearity

More Information
  • 摘要:

    随着飞机性能和需求的提高,大展弦比高柔性机翼逐渐成为新型飞机的主要结构形式。这类机翼具有高升阻比、大变形和重量轻等特性,几何非线性效应明显。然而机翼的大展弦比高柔性会带来更大的机翼变形,而机翼大变形则会引起相关的非线性气动弹性行为。为了评估这些非线性气动弹性行为并同时降低设计风险和成本,一般要使用缩比模型进行风洞试验以研究和确认真实飞机的气动弹性特性。基于此,首先使用了传统线性缩比方法来进行缩比,通过刚度质量耦合匹配模态响应法与刚度质量解耦匹配模态响应法这2种线性缩比方法,不断优化缩比结构的设计参数来满足目标缩比值。同时,提出一种动力学有限元模型的非线性静响应-模态协同优化方法,该方法是基于等效静态载荷法的几何非线性气动弹性模型缩比方法,通过2个不同的优化子程序分别匹配全尺寸飞机的非线性静响应和模态振型。结果表明,相比于传统线性缩比模型,考虑几何非线性的缩比模型能够更好地再现全尺寸飞机的非线性气动弹性行为。

     

  • 图 1  传统线性缩比方法(方法A)

    Figure 1.  Traditional linear scaling method (Method A)

    图 2  传统线性缩比方法(方法B)

    Figure 2.  Traditional linear scaling method (Method B)

    图 3  考虑几何非线性的缩比方法(方法C)

    Figure 3.  Scaling method considering geometric nonlinearity (Method C)

    图 4  分析域和设计域优化流程图

    Figure 4.  Flowchart of analysis and design domain optimization

    图 5  等效静态载荷法的实现过程图

    Figure 5.  Implementation procedure of equivalent static loads method

    图 6  机翼平面布局

    Figure 6.  External configuration of wing

    图 7  全机结构及内部结构

    Figure 7.  Whole aircraft structure and internal structure

    图 8  翼尖变形趋势

    Figure 8.  Variation of wing tip deflection

    图 9  截面转角和扭转角的变化趋势

    Figure 9.  Variation of cross-section bend angle and twist angle

    图 10  非线性翼尖垂向变形

    Figure 10.  Nonlinear wing tip vertical deformation

    图 11  3种方法结果与目标频率相似度、目标振型(平动)相似度和目标振型(转动)相似度差异

    Figure 11.  Difference in similarity between results of three methods and target frequency, target translational mode shapes and target rotational mode shapes

    图 12  V-gV-f

    Figure 12.  V-g and V-f diagram

    表  1  全尺寸机翼的主要参数

    Table  1.   Main parameters of full-scale wing

    参数 数值
    机翼面积/m2 80
    内翼展长/m 36
    外翼展长/m 14
    翼根弦长/m 2
    翼尖弦长/m 1
    结构总质量/kg 202.5
    下载: 导出CSV

    表  2  传统线性缩比方法与考虑几何非线性的缩比方法结果参数比较

    Table  2.   Comparison of result parameters between traditional linear scaling method and scaling method considering geometric nonlinearity

    方法 设计变量数 求解时间/h 误差/%
    方法A 27 1.5 8.11
    方法B 30(24+6) 0.9(0.5+0.4) 9.95
    方法C 30(24+6) 2.9(2.4+0.5) 2.80
    下载: 导出CSV

    表  3  两种方法结果与目标颤振速度及频率误差

    Table  3.   Flutter speed and frequency differences between Method B and C in relation to associated target scaled values

    %
    方法 颤振速度误差 颤振频率误差
    方法B 8.25 16.84
    方法C 1.18 5.67
    下载: 导出CSV
  • [1] 徐江锋.大展弦比无人机机翼预变形研究[D].南昌: 南昌航空大学, 2013: 1-2. http://cdmd.cnki.com.cn/Article/CDMD-10406-1014006538.htm

    XU J F.Research on pre-deformation for high-aspect-ratio wing of UAV[D].Nanchang: Nanchang Hangkong University, 2013: 1-2(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10406-1014006538.htm
    [2] HARMIN M Y, COOPER J E.Aeroelastic behaviour of a wing including geometric nonlinearities[J].Aeronautical Journal, 2016, 115(1174):767-777. http://cn.bing.com/academic/profile?id=93aff41bfb67c72852dea68aae995aab&encoded=0&v=paper_preview&mkt=zh-cn
    [3] PALACIOS R, MURUA J, COOK R.Structural and aerodynamic models in nonlinear flight dynamics of very flexible aircraft[J].AIAA Journal, 2010, 48(11):2648-2659. doi: 10.2514/1.J050513
    [4] PATILM J, HODGES D H, CESNIK C E S.Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft[J].Journal of Aircraft, 2001, 38(1):88-94. doi: 10.2514/2.2738
    [5] 吕斌, 刘德广, 谢长川, 等.机翼低速风洞试验颤振模型优化设计方法[J].北京航空航天大学学报, 2006, 32(2):163-166. doi: 10.3969/j.issn.1001-5965.2006.02.009

    LV B, LIU D G, XIE C C, et al.Optimization designing method of wing flutter model for low-speed wind tunnel test[J].Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(2):163-166(in Chinese). doi: 10.3969/j.issn.1001-5965.2006.02.009
    [6] FRENCH M, EASTEP F E.Aeroelastic model design using parameter identification[J].Journal of Aircraft, 1996, 33(1):198-202. doi: 10.2514/3.46922
    [7] 赵延新.机翼气动弹性模型RTM工艺研究及模具设计[D].大连: 大连理工大学, 2014: 1-2. http://cdmd.cnki.com.cn/Article/CDMD-10141-1015571724.htm

    ZHAO Y X.Research on the RTM process of aeroelastic model of wing and mold design[D].Dalian: Dalian University of Technology, 2014: 1-2(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10141-1015571724.htm
    [8] RICCIARDI A P.Geometrically nonlinear aeroelastic scaling[D].Blacksburg: Virginia Tech, 2014: 2-5.
    [9] WAN Z Q, CESNIK C E S.Geometrically nonlinear aeroelastic scaling for very flexible aircraft[J].AIAA Journal, 2014, 52(10):2251-2260. doi: 10.2514/1.J052855
    [10] BOND V L, CANFIELD R A, SULEMAN A, et al.Aeroelastic scaling of a joined wing for nonlinear geometric stiffness[J].AIAA Journal, 2012, 50(3):513-522. doi: 10.2514/1.41139
    [11] RICCIARDI A P, EGER C A G, CANFIELD R A, et al.Nonlinear aeroelastic-scaled-model optimization using equivalent static loads[J].Journal of Aircraft, 2014, 51(6):1-10. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0234964067/
    [12] BISPLINGHOFF R L, ASHLEY H, HALFMAN R L.Aeroelasticity[M].Cambridge:Addison-Wesley Publishing, 1955:695-716.
    [13] WU Q, WAN Z Q, YANG C.Design optimization of scaled FLUTTER model considering structural dynamics and flutter constraints[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(7):1210-1216. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201107006
    [14] PEREIRA P, ALMEIDA L, SULEMAN A, et al.Aeroelastic scaling and optimization of a joined-wing aircraft concept[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference.Reston: AIAA, 2013: 2145-2148. https://www.researchgate.net/publication/268477619_Aeroelastic_Scaling_and_Optimization_of_a_Joined-Wing_Aircraft_Concept
    [15] PARK G J.Technical overview of the equivalent static loads method for non-linear static response structural optimization[J].Structural & Multidisciplinary Optimization, 2011, 43(3):319-337. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=5ce7ec7a39b621c710fd59c2a81b104a
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  411
  • HTML全文浏览量:  5
  • PDF下载量:  380
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-07-11
  • 录用日期:  2018-10-15
  • 刊出日期:  2019-04-20

目录

    /

    返回文章
    返回
    常见问答