留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

颈动脉内血流动力学特征受向前加速度影响的数值模拟

刘岩 孙安强

刘岩, 孙安强. 颈动脉内血流动力学特征受向前加速度影响的数值模拟[J]. 北京航空航天大学学报, 2019, 45(3): 493-498. doi: 10.13700/j.bh.1001-5965.2018.0471
引用本文: 刘岩, 孙安强. 颈动脉内血流动力学特征受向前加速度影响的数值模拟[J]. 北京航空航天大学学报, 2019, 45(3): 493-498. doi: 10.13700/j.bh.1001-5965.2018.0471
LIU Yan, SUN Anqiang. Influence of forward acceleration on hemodynamic characteristics of carotid arteries:A numerical simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 493-498. doi: 10.13700/j.bh.1001-5965.2018.0471(in Chinese)
Citation: LIU Yan, SUN Anqiang. Influence of forward acceleration on hemodynamic characteristics of carotid arteries:A numerical simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(3): 493-498. doi: 10.13700/j.bh.1001-5965.2018.0471(in Chinese)

颈动脉内血流动力学特征受向前加速度影响的数值模拟

doi: 10.13700/j.bh.1001-5965.2018.0471
基金项目: 

国家自然科学基金 11472031

国家自然科学基金 11102014

详细信息
    作者简介:

    刘岩  男, 博士研究生。主要研究方向:流体力学、生物材料

    孙安强  男, 博士, 副教授, 硕士生导师。主要研究方向:血流动力学

    通讯作者:

    孙安强, E-mail:saq@buaa.edu.cn

  • 中图分类号: R318.08

Influence of forward acceleration on hemodynamic characteristics of carotid arteries:A numerical simulation

Funds: 

National Natural Science Foundation of China 11472031

National Natural Science Foundation of China 11102014

More Information
  • 摘要:

    人们在日常或某些特殊条件下常会面临方向和大小发生迅速变化的加速度环境,已有研究发现加速度环境会影响心血管系统生理、病理特征。利用计算机模拟方法详细研究了向前加速度环境下人体颈动脉内的血流动力学参数变化规律。结果表明:加速度会对颈动脉内压力、压力梯度、壁面剪切应力等与血管生理、病理现象密切相关的血流动力学参数产生显著影响。研究结果为加速度环境下颈动脉生理、病理研究提供了一定的理论依据,也为航空航天领域加速度环境下人员防护提供参考。

     

  • 图 1  右侧颈动脉血管3D模型及网格图

    Figure 1.  Right carotid artery 3D model and meshes

    图 2  模型的边界条件

    Figure 2.  Boundary conditions of model

    图 3  颈动脉模型壁面压力梯度分布云图

    Figure 3.  Contours of wall pressure gradient distribution of carotid artery model

    图 4  颈动脉模型相对压力云图

    Figure 4.  Contours of relative pressure of carotid artery model

    图 5  颈动脉模型壁面剪切应力分布云图

    Figure 5.  Contours of wall shear stress distribution of carotid artery model

    图 6  颈动脉分叉处4个分区示意图

    Figure 6.  Schematic of four areas at carotid branch

    图 7  颈动脉分叉处4个分区上平均压力和压力梯度变化曲线

    Figure 7.  Average pressure and pressure gradient curves of four areas at carotid branch

    图 8  颈动脉内血液流量变化曲线

    Figure 8.  Blood flow rate curves of carotid arteries

    表  1  T1~T8代表的具体时刻(记录周期初始时刻为T = 0)

    Table  1.   Specific time represented by T1-T8 (beginning of cycle is defined as T = 0)

    时间点 T1 T2 T3 T4 T5 T6 T7 T8
    时间/s 0.05 0.1 0.15 0.7 1.05 1.1 1.15 1.7
    下载: 导出CSV
  • [1] SUD V K, SEKHON G S.Analysis of blood flow through a model of the human arterial system under periodic body acceleration[J].Journal of Biomechanics, 1986, 19(11):929-941. doi: 10.1016/0021-9290(86)90188-0
    [2] CHATURANI P, PALANISAMY V.Casson fluid model for pulsatile flow of blood under periodic body acceleration[J].Biorheology, 1990, 27(5):619-630. doi: 10.3233/BIR-1990-27501
    [3] CHATURANI P, PALANISAMY V.Pulsatile flow of blood with periodic body acceleration[J].International Journal of Engineering Science, 1991, 29(1):113-121. doi: 10.1016/0020-7225(91)90081-D
    [4] MAJHI S N, NAIR V R.Pulsatile flow of third grade fluids under body acceleration-Modelling blood flow[J].International Journal of Engineering Science, 1994, 32(5):839-846. doi: 10.1016/0020-7225(94)90064-7
    [5] CHAKRAVARTY S, DATTA A, MANDAL P K.Effect of body acceleration on unsteady flow of blood past a time-dependent arterial stenosis[J].Mathematical and Computer Modelling, 1996, 24(2):57-74. doi: 10.1016/0895-7177(96)00090-8
    [6] MANDAL P K, CHAKRAVARTY S, MANDAL A, et al.Effect of body acceleration on unsteady pulsatile flow of non-Newtonian fluid through a stenosed artery[J].Applied Mathematics and Computation, 2007,189(1):766-779. doi: 10.1016/j.amc.2006.11.139
    [7] JOU L D, BERGER S A.Numerical simulation of the flow in the carotid bifurcation[J].Theoretical and Computational Fluid Dynamics, 1998, 10(1-4):239-248. doi: 10.1007/s001620050061
    [8] HOLDSWORTH D W, NORLEY C J, FRAYNE R, et al.Characterization of common carotid artery blood-flow waveforms in normal human subjects[J].Physiological Measurement, 1999, 20(3):219-240. doi: 10.1088/0967-3334/20/3/301
    [9] DE SANTIS G, CONTI M, TRACHET B, et al.Haemodynamic impact of stent-vessel(mal)apposition following carotid artery stenting:Mind the gaps![J].Computer Methods in Biomechanics and Biomedical Engineering, 2013, 16(6):648-659. doi: 10.1080/10255842.2011.629997
    [10] PATEL D J, VAISHNAV R N.Basic hemodynamics and its role in disease processes[M].Baltimore:University Park Press, 1980.
    [11] WANG Z, SUN A, FAN Y, et al.Comparative study of Newtonian and non-Newtonian simulations of drug transport in a model drug-eluting stent[J].Biorheology, 2012, 49(4):249-259. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2f5182f78cc695214f0d49771ac2e310
    [12] SHAHED A R, BARBER J A, WERCHAN P M.Multiple +Gz exposures cause brain edema in rats[J].Aviation, Space, and Environmental Medicine, 1994, 65(6):522-526. https://www.ncbi.nlm.nih.gov/pubmed/8074625
    [13] OYAMA J, PLATT W T.Metabolic alterations in rats exposed to acute acceleration stress[J].Endocrinology, 1965, 76:203-209. doi: 10.1210/endo-76-2-203
    [14] ERICKSON H H, SANDLETR H, STONE H L.Cardiovascular function during sustained +Gz stress[J].Aviation, Space, and Environmental Medicine, 1976, 47(7):750-758. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=phv6IHRs0WBLOiG5uqbUzvmee+XpciCloTb2QuVOeBQ=
    [15] KRISTOFFERSEN S, VETTI N, MORILD I.Traumatic dissection of the vertebral artery in a toddler following a short fall[J].Forensic Science International, 2012,221(1-3):E34-E38. doi: 10.1016/j.forsciint.2012.04.023
    [16] KAISER C, SCHNABEL A, BERKEFELD J, et al.Traumatic rupture of the intracranial vertebral artery due to rotational acceleration[J].Forensic Science International, 2008,182(1-3):E15-E17. doi: 10.1016/j.forsciint.2008.10.001
    [17] SALVATORI M, KODIKARA S, POLLANEN M.Fatal subarachnoid hemorrhage following traumatic rupture of the internal carotid artery[J].Legal Medicine, 2012, 14(6):328-330. doi: 10.1016/j.legalmed.2012.06.004
    [18] LI Z, TAVIANI V, TANG T, et al.The mechanical triggers of plaque rupture:Shear stress vs pressure gradient[J].British Journal of Radiology, 2009, 82(1):S39-S45. doi: 10.1259/bjr/15036781
    [19] MENDELL J T, OLSON E N.MicroRNAs in stress signaling and human disease[J].Cell, 2012,148(6):1172-1187. doi: 10.1016/j.cell.2012.02.005
    [20] KOUGIAS P, BISMUTH J, HUYNH T T, et al.Symptomatic aneurysm rupture without bleeding secondary to endotension 4 years after endovascular repair of an abdominal aortic aneurysm[J].Journal of Endovascular Therapy, 2008, 15(6):702-705. doi: 10.1583/08-2391.1
    [21] SAMESHIMA N, YAMASHITA A, SATO S, et al.The values of wall shear stress, turbulence kinetic energy and blood pressure gradient are associated with atherosclerotic plaque erosion in rabbits[J].Journal of Atherosclerosis and THombosis, 2014, 21(8):831-838. doi: 10.5551/jat.23093
    [22] FOLTS J. Arterial blood pressure gradient across vulnerable plaque might increase rupture[J].Journal of the American College of Cardiology, 2007, 50(25):2440. http://www.onlinejacc.org/content/50/25/2440.1
    [23] SALIOU G, LEBLANC P E, CAUQUIL C, et al.Sudden loss of consciousness during a flight[J].Cerebrovascular Diseases, 2014, 37(6):470-471. doi: 10.1159/000363370
    [24] WHINNERY J E, WHINNERY A M.Acceleration-induced loss of consciousness:A review of 500 episodes[J].Archives of Neurology, 1990, 47(7):764-776. doi: 10.1001/archneur.1990.00530070058012
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  324
  • HTML全文浏览量:  6
  • PDF下载量:  549
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-08-10
  • 录用日期:  2018-09-19
  • 刊出日期:  2019-03-20

目录

    /

    返回文章
    返回
    常见问答