留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多传感器协同识别跟踪多目标管理方法

庞策 单甘霖 段修生

庞策, 单甘霖, 段修生等 . 多传感器协同识别跟踪多目标管理方法[J]. 北京航空航天大学学报, 2019, 45(8): 1674-1680. doi: 10.13700/j.bh.1001-5965.2018.0612
引用本文: 庞策, 单甘霖, 段修生等 . 多传感器协同识别跟踪多目标管理方法[J]. 北京航空航天大学学报, 2019, 45(8): 1674-1680. doi: 10.13700/j.bh.1001-5965.2018.0612
PANG Ce, SHAN Ganlin, DUAN Xiushenget al. Management method for multiple sensors' recognizing and tracking multiple targets cooperatively[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1674-1680. doi: 10.13700/j.bh.1001-5965.2018.0612(in Chinese)
Citation: PANG Ce, SHAN Ganlin, DUAN Xiushenget al. Management method for multiple sensors' recognizing and tracking multiple targets cooperatively[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1674-1680. doi: 10.13700/j.bh.1001-5965.2018.0612(in Chinese)

多传感器协同识别跟踪多目标管理方法

doi: 10.13700/j.bh.1001-5965.2018.0612
基金项目: 

国防预研基金 012015012600A2203

详细信息
    作者简介:

    庞策  男, 博士研究生。主要研究方向:多传感器协同与信息感知

    单甘霖  男, 博士, 教授, 博士生导师。主要研究方向:传感器管理、信息融合理论与应用、防空武器系统仿真与应用等

    通讯作者:

    单甘霖, E-mail: shanganlin@163.com

  • 中图分类号: V37;TP212

Management method for multiple sensors' recognizing and tracking multiple targets cooperatively

Funds: 

National Defence Pre-research Foundation 012015012600A2203

More Information
  • 摘要:

    针对被跟踪的目标中存在虚假目标的问题,首先建立基于风险理论、贝叶斯理论和证据理论的目标识别模型,在此基础上考虑边跟踪边识别的情况,建立同时考虑目标跟踪和识别性能的风险函数模型。在模型求解过程中,提出一种基于多Agent分布计算理论的分布式算法。仿真实验结果表明:目标识别框架下能够对目标有效识别并及时停止对虚假目标跟踪;提出的传感器方案求解算法具有较好的求解质量和较快的求解速度;本文传感器管理方法能够避免传感器资源浪费,提高对真目标的跟踪效果。

     

  • 图 1  风险值分析

    Figure 1.  Analysis of value-at-risk

    图 2  目标丢失概率示意图

    Figure 2.  Sketch map of target losing probability

    图 3  传感器管理流程图

    Figure 3.  Flowchart of sensor management

    图 4  作战态势

    Figure 4.  Combat situation

    图 5  传感器s1对目标t1的目标识别过程

    Figure 5.  Process of target identification of sensor s1 to target t1

    图 6  传感器s2对目标t3的目标识别过程

    Figure 6.  Process of target identification of sensor s2 to target t3

    图 7  算法对比

    Figure 7.  Comparison of algorithms

    图 8  传感器管理方法对比

    Figure 8.  Comparison of sensor management methods

    表  1  传感器信息

    Table  1.   Information of sensors

    传感器 pd pf σd2 σα2 Ω/m2
    s1 0.8 0.1 10 0.010 30×30
    s2 0.9 0.2 20 0.020 30×30
    s3 0.8 0.2 15 0.015 30×30
    s4 0.7 0.1 30 0.030 20×20
    下载: 导出CSV

    表  2  目标信息

    Table  2.   Information of targets

    目标 C
    t1 C(1) (500, 0) 0.5 -300 0
    t2 C(1) (0, 500) 0.5 0 -600
    t3 C(0) (-500, 0) 0.4 450 0
    t4 C(0) (0, -500) 0.5 0 -400
    下载: 导出CSV
  • [1] SUBEDI S, ZHANG Y D, AMIN M G, et al.Cramer-Rao type bounds for sparsity-aware multi-sensor multi-target tracking[J].Signal Processing, 2018, 145:68-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=16aa078d7cdbb8cca405f7425ffd3263
    [2] ASGHAR A B, JAWAID S T, SMITH S L.A complete greedy algorithm for infinite-horizon sensor scheduling[J].Automatica, 2017, 81:335-341. doi: 10.1016/j.automatica.2017.04.018
    [3] GOSTAR A, HOSEINNEZHAD R, WEIFEBG L, et al.Sensor-management for multi-target filters via minimization of posterior dispersion[J].IEEE Transactions on Aerospace and Electronic Systems, 2017, 53(6):2877-2884. doi: 10.1109/TAES.2017.2718280
    [4] HONG H G, BA-NBGU T, MAULE R.The Cauchy-Schwarz divergence for poisson point process[J].IEEE Transactions on Information Theory, 2015, 61(8):4475-4485. doi: 10.1109/TIT.2015.2441709
    [5] BUKAL M, MARKOVI I, PETROVI I.Score matching based assumed density filtering with the von Mises-Fisher distribution[C]//Proceedings of 20th International Conference on Information Fusion.Piscataway, NJ: IEEE Press, 2017: 433-438. https://lamor.fer.hr/images/50020776/Bukal2017.pdf
    [6] SAYIN M O, LIN C W, SHIRAISH S, et al.Information-driven autonomous intersection control via incentive compatible mechanisms[J].IEEE Transactions on Intelligent Transportation Systems, 2018, 99(1):1-13. http://cn.bing.com/academic/profile?id=7181638afc19067717357a5c4c4bcf5f&encoded=0&v=paper_preview&mkt=zh-cn
    [7] MARTIN S.Risk-based sensor resource management for field of view constraint sensor[C]//Proceedings of 18th International Conference on Information Fusion.Piscataway, NJ: IEEE Press, 2015: 2041-2048. https://c4i.gmu.edu/~pcosta/F15/data/fileserver/file/472057/filename/Paper_1570103675.pdf
    [8] BORGES M E G, MALTESE D, VANHEEGHE P, et al.Sensor management using expected risk reduction approach[C]//Proceedings of 19th International Conference on Information Fusion, Piscataway, NJ: IEEE Press, 2016: 2050-2058. https://www.researchgate.net/publication/308697816_Sensor_Management_using_Expected_Risk_Reduction_approach
    [9] BORGES M E G, MALTESE D, VANHEEGHE P, et al.A risk-based sensor management using random finite sets and POMDP[C]//Proceedings of 20th International Conference on Information Fusion.Piscataway, NJ: IEEE Press, 2017: 1588-1596. A risk-based sensor management using random finite sets and POMDP
    [10] 童俊, 单甘霖.基于修正Riccati方程和Kuhn-Munkres算法的多传感器跟踪资源分配[J].控制与决策, 2012, 27(5):747-751.

    TONG J, SHAN G L.Study of multi-sensor allocation based on modified Riccati equation and Kuhn-Munkres algorithm[J].Control and Decision, 2012, 27(5):747-751(in Chinese).
    [11] HEGARAT-MASCLE S L, BLOCH I, VIDAL-MADJAR D.Application of Dempster-Shafer evidence theory to unsupervised classification in multisource remote sensing[J].IEEE Transactions on Geoscience and Remote Sensing, 1997, 35(4):1018-1031. doi: 10.1109/36.602544
    [12] HARE J Z, GUPTA S, WETTERGREN T A.POSE:Prediction-based opportunistic sensing for energy efficiency in sensor networks using distributed supervisors[J].IEEE Transactions on Cybernetics, 2017, 48(7):2114-2127. http://d.old.wanfangdata.com.cn/Periodical/yqyb201504003
    [13] 李志汇, 刘昌云, 倪鹏.反导多传感器协同任务规划综述[J].宇航学报, 2016, 37(1):29-38. doi: 10.3873/j.issn.1000-1328.2016.01.004

    LI Z H, LIU C Y, NI P.Review on multisensor cooperative mission planning in anti-TBM system[J].Journal of Astronautics, 2016, 37(1):29-38(in Chinese). doi: 10.3873/j.issn.1000-1328.2016.01.004
    [14] OZTURK O, BEGEN M A, ZARIC G S.A branch and bound algorithm for scheduling unit size jobs on parallel batching machines to minimize makespan[J].International Journal of Production Research, 2017, 55(6):1815-1831. doi: 10.1080/00207543.2016.1253889
    [15] SHI C G, SALOUS S, WANG F, et al.Power allocation for target detection in radar networks based on low probability of intercept:A cooperative game theoretical strategy[J].Radio Science, 2017, 52(8):1030-1045. doi: 10.1002/2017RS006332
    [16] ODEJIDE O O, BENTLEY E S, KONDI L P, et al.Effective resource management in visual sensor networks with MPSK[J].IEEE Signal Processing Letters, 2013, 20(8):739-742. doi: 10.1109/LSP.2013.2265912
    [17] LIU Y, WANG H.UKF based nonlinear filtering using minimum entropy criterion[J].IEEE Transactions on Signal Processing Journal of Astronautics, 2013, 61(20):4988-4999. doi: 10.1109/TSP.2013.2274956
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  428
  • HTML全文浏览量:  2
  • PDF下载量:  429
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-10-23
  • 录用日期:  2019-04-12
  • 刊出日期:  2019-08-20

目录

    /

    返回文章
    返回
    常见问答