留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

静电传感器测量固体颗粒质量流量实验研究

吴诗彤 闫勇 钱相臣

吴诗彤, 闫勇, 钱相臣等 . 静电传感器测量固体颗粒质量流量实验研究[J]. 北京航空航天大学学报, 2019, 45(8): 1575-1581. doi: 10.13700/j.bh.1001-5965.2018.0750
引用本文: 吴诗彤, 闫勇, 钱相臣等 . 静电传感器测量固体颗粒质量流量实验研究[J]. 北京航空航天大学学报, 2019, 45(8): 1575-1581. doi: 10.13700/j.bh.1001-5965.2018.0750
WU Shitong, YAN Yong, QIAN Xiangchenet al. Experimental study on mass flow measurement of solid particles using electrostatic sensors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1575-1581. doi: 10.13700/j.bh.1001-5965.2018.0750(in Chinese)
Citation: WU Shitong, YAN Yong, QIAN Xiangchenet al. Experimental study on mass flow measurement of solid particles using electrostatic sensors[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1575-1581. doi: 10.13700/j.bh.1001-5965.2018.0750(in Chinese)

静电传感器测量固体颗粒质量流量实验研究

doi: 10.13700/j.bh.1001-5965.2018.0750
基金项目: 

国家自然科学基金 61603135

中央高校基本科研业务费专项资金 2018ZD05

详细信息
    作者简介:

    吴诗彤  女, 硕士研究生。主要研究方向:气固两相流检测技术

    闫勇   男, 博士, 教授, 博士生导师。主要研究方向:多相流测量技术、火焰监测技术与先进仪表

    钱相臣   男, 博士, 副教授, 硕士生导师。主要研究方向:多相流检测技术、智能仪表与工业过程参数检测技术

    通讯作者:

    钱相臣, E-mail: xqian@ncepu.edu.cn

  • 中图分类号: TP212

Experimental study on mass flow measurement of solid particles using electrostatic sensors

Funds: 

National Natural Science Foundation of China 61603135

the Fundamental Research Funds for the Central Universities 2018ZD05

More Information
  • 摘要:

    航空发动机气路和排放尾气中固体颗粒物的监测有助于提高相关设备故障的识别和预警能力。采用3种不同形式的静电传感器测量方形管道中固体颗粒质量流量,并对其测量准确度进行了对比分析。3种静电传感器在4种输送气流速度和4种固体颗粒质量流量组合成的16种工况下测量了稀相固体颗粒的静电信号,并利用静电信号强度和固体颗粒速度进行了全工况固体颗粒质量流量标定。实验结果表明:方环形静电电极的平均测量偏差最大,侵入式条状静电电极阵列在质量流量较低时的测量偏差最小,非侵入式条状静电电极阵列在质量流量较高时的测量偏差最小。

     

  • 图 1  静电传感器测量系统结构示意图

    Figure 1.  Schematic diagram of principles of electrostatic sensor measurement system

    图 2  静电传感器电极布置及其空间相对灵敏度分布

    Figure 2.  Electrode layout and space relative sensitivity distribution of electrostatic sensor

    图 3  静电传感器探头结构与尺寸

    Figure 3.  Structure and dimension of electrostatic sensor head

    图 4  方形截面管道气力输送实验装置

    Figure 4.  Pneumatic conveying experimental facility with square-shaped pipeline

    图 5  不同输送气流速度条件下测得的原始静电信号

    Figure 5.  Raw electrostatic signal measured under different conveying gas velocities

    图 6  不同输送气流速度条件下测得的信号均方根值

    Figure 6.  Root-mean-square value of signals measured under different conveying gas velocities

    图 7  不同输送气流速度条件下固体颗粒的速度

    Figure 7.  Velocity of solid particles measured under different conveying gas velocities

    图 8  单一工况标定得到的系数K

    Figure 8.  Coefficient K obtained by individual test condition calibration

    图 9  单一工况标定得到的固体颗粒质量流量测量值与相对误差

    Figure 9.  Measured mass flow and relative error obtained by individual test condition calibration

    图 10  全工况标定得到的固体颗粒质量流量

    Figure 10.  Mass flow of solid particle obtained by all-test-condition calibration

    图 11  全工况标定得到的固体颗粒质量流量的相对误差

    Figure 11.  Relative error of mass flow measurement of solid particles obtained from all-test-condition calibration

    表  1  三种静电传感器截面平均参数计算

    Table  1.   Cross-sectional average parameter calculation using three types of electrostatic sensors

    静电传感器 va ARMS, a
    vA ARMS, A
    (vA+vB+…+vL)/12 ARMS, A+ARMS, B+…+ARMS, L
    (vA+vB+…+vI)/9 ARMS, A+ARMS, B+…+ARMS, I
    下载: 导出CSV

    表  2  实验条件

    Table  2.   Experimental condition

    固体颗粒质量流量/(g·s-1) 输送气流速度/(m·s-1)
    V1=19 V2=23 V3=27 V4=31
    M1=0.56 V1M1 V2M1 V3M1 V4M1
    M2=1.11 V1M2 V2M2 V3M2 V4M2
    M3=1.67 V1M3 V2M3 V3M3 V4M3
    M4=2.22 V1M4 V2M4 V3M4 V4M4
    下载: 导出CSV
  • [1] CHEN Z S, TANG X, HU Z, et al.Investigations into sensing characteristics of circular thin-plate electrostatic sensors for gas path monitoring[J]. Chinese Journal of Aeronautics, 2014, 27(4):812-820. doi: 10.1016/j.cja.2014.03.019
    [2] SUN J Z, ZUO H F, LIU P P, et al.Experimental study on engine gas-path component fault monitoring using exhaust gas electrostatic signal[J]. Measurement Science and Technology, 2013, 24(12):125107. doi: 10.1088/0957-0233/24/12/125107
    [3] WEN Z H, HOU J X, ATKIN J.A review of electrostatic monitoring technology:The state of the art and future research derections[J]. Progress in Aerospace Sciences, 2017, 94(6):1-11.
    [4] ZHENG Y, LIU Q.Review of techniques for the mass flow rate measurement of pneumatically conveyed solids[J]. Measurement, 2011, 44(4):589-604. doi: 10.1016/j.measurement.2011.01.013
    [5] YAN Y.Mass flow measurement of bulk solids in pneumatic pipelines[J]. Measurement Science and Technology, 1996, 7(12):1687-1706. doi: 10.1088/0957-0233/7/12/002
    [6] WEN Z H, MA X J, ZUO H F.Characteristics analysis and experiment verification of electrostatic sensor for areo-engine exhaust gas monitoring[J]. Measurement, 2014, 47(1):633-644.
    [7] TANG X, CHEN Z S, LI Y, et al.Analysis of the dynamic sensitivity of hemisphere-shaped electrostatic sensor's circular array for charged particle monitoring[J]. Sensors, 2016, 16(9):1403. doi: 10.3390/s16091403
    [8] ADDABBO T, FORT A, GARBIN R, et al.Theoretical characterization of a gas path debris detection monitoring system based on electrostatic sensors and charge amplifiers[J]. Measurement, 2015, 64(1):138-146. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2810e07c0f75bcb1d10863bbaa95c928
    [9] LI J, FU F F, LI S, et al.Velocity characterization of dense phase pneumatically conveyed solid particles in horizontal pipeline through an integrated electrostatic sensor[J]. International Journal of Multiphase Flow, 2015, 76:198-211. doi: 10.1016/j.ijmultiphaseflow.2014.11.004
    [10] COOMBES J R, YAN Y.Measurement of velocity and concentration profiles of pneumatically conveyed particles using an electrostatic sensor array[J]. IEEE Transactions on Instrumentation and Measurement, 2016, 65(5):1139-1148. doi: 10.1109/TIM.2015.2494620
    [11] MURNANE S N, BARNES R N, WOODHEAD S R, et al.Electrostatic modelling and measurement of airborne particle concentration[J]. IEEE Transactions on Instrumentation and Measurement, 1996, 45(2):488-492. doi: 10.1109/19.492773
    [12] PENG L H, ZHANG Y, YAN Y.Characterization of electrostatic sensors for flow measurement of particulate solids in square-shaped pneumatic conveying pipelines[J]. Sensors and Actuators A:Physical, 2008, 141(1):59-67. doi: 10.1016/j.sna.2007.07.021
    [13] JURJEVČIČ B, SENEGAČNIK A, DROBNIČ B, et al.The characterization of pulverized-coal pneumatic transport using an array of intrusive electrostatic sensors[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64(12):3434-3443. doi: 10.1109/TIM.2015.2465731
    [14] ZHANG S, YAN Y, QIAN X C, et al.Mathematical modeling and experimental evaluation of electrostatic sensor arrays for the flow measurement of fine particles in a square-shaped pipe[J]. IEEE Sensors Journal, 2016, 16(23):8531-8541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=c180d9746c079ad2eb49bd8e4baabee0
    [15] QIAN X C, YAN Y, SHAO J Q, et al.Quantitative characterization of pulverized coal and biomass-coal blends in pneumatic conveying pipelines using electrostatic sensor arrays and data fusion techniques[J]. Measurement Science and Technology, 2012, 23(8):085307. doi: 10.1088/0957-0233/23/8/085307
    [16] ZHANG S, QIAN X C, YAN Y, et al.Characterisation of pulverized fuel flow in a square-shaped pneumatic conveying pipe using electrostatic sensor arrays[C]//Proceeding of IEEE Instrumentation and Measurement Technology Conference.Piscataway, NJ: IEEE Press, 2016: 601-605.
    [17] ZHANG J Y.Air-solids flow measurement using electrostatic techniques[M]//CANBOLAT H.Electrostatics.London: IntechOpen, 2012: 61-80.
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  371
  • HTML全文浏览量:  4
  • PDF下载量:  425
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-20
  • 录用日期:  2019-01-23
  • 刊出日期:  2019-08-20

目录

    /

    返回文章
    返回
    常见问答