留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于高阶LADRC的V/STOL飞机悬停/平移模式鲁棒协调解耦控制

高阳 吴文海 嵇绍康 郑毅

高阳, 吴文海, 嵇绍康, 等 . 基于高阶LADRC的V/STOL飞机悬停/平移模式鲁棒协调解耦控制[J]. 北京航空航天大学学报, 2019, 45(9): 1812-1823. doi: 10.13700/j.bh.1001-5965.2018.0758
引用本文: 高阳, 吴文海, 嵇绍康, 等 . 基于高阶LADRC的V/STOL飞机悬停/平移模式鲁棒协调解耦控制[J]. 北京航空航天大学学报, 2019, 45(9): 1812-1823. doi: 10.13700/j.bh.1001-5965.2018.0758
GAO Yang, WU Wenhai, JI Shaokang, et al. High-order LADRC based robust coordinated decoupling control for V/STOL aircraft in hover/translation mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1812-1823. doi: 10.13700/j.bh.1001-5965.2018.0758(in Chinese)
Citation: GAO Yang, WU Wenhai, JI Shaokang, et al. High-order LADRC based robust coordinated decoupling control for V/STOL aircraft in hover/translation mode[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9): 1812-1823. doi: 10.13700/j.bh.1001-5965.2018.0758(in Chinese)

基于高阶LADRC的V/STOL飞机悬停/平移模式鲁棒协调解耦控制

doi: 10.13700/j.bh.1001-5965.2018.0758
基金项目: 

国家自然科学基金 60674090

国家自然科学基金 51505491

详细信息
    作者简介:

    高阳  男, 博士研究生。主要研究方向:推力矢量飞机飞行控制、非线性控制理论与应用

    吴文海  男, 博士, 教授, 博士生导师。主要研究方向:飞行综合控制、战机攻击导引

    通讯作者:

    吴文海, E-mail: hkdx_2017@126.com

  • 中图分类号: V249.1

High-order LADRC based robust coordinated decoupling control for V/STOL aircraft in hover/translation mode

Funds: 

National Natural Science Foundation of China 60674090

National Natural Science Foundation of China 51505491

More Information
  • 摘要:

    针对垂直/短距起降(V/STOL)飞机在悬停/平移模式下存在的动力学耦合、推力矢量控制冗余以及易受扰动风影响的问题,提出了一种基于高阶线性自抗扰控制(LADRC)的鲁棒协调解耦控制方法。首先根据V/STOL飞机的概念方案,建立了推力矢量模型和扰动风影响下的非线性悬停/平移运动模型。然后在此基础上,给出了该模式下位置和姿态的协调控制策略,据此通过控制量变换设计了六通道的自抗扰解耦控制律,其中利用LADRC对总扰动的实时估计补偿能力避免了多推力矢量的冗余控制。仿真比较结果验证了LADRC对悬停/平移模式控制的有效性以及对飞机内部参数摄动和外界突风干扰的鲁棒性。

     

  • 图 1  V/STOL飞机概念方案

    Figure 1.  Conceptual scheme of V/STOL aircraft

    图 2  悬停/平移模式的飞行状态响应

    Figure 2.  Flight state responses in hover/translation mode

    图 3  悬停/平移模式的推力矢量控制输入

    Figure 3.  Thrust vector control inputs in hover/translation mode

    表  1  V/STOL飞机推进系统的参数配置

    Table  1.   Configured parameters of V/STOL aircraft propulsion system

    部件 推力/N
    (规定为正)
    纵向偏转角/(°)
    (下偏或后偏为正)
    侧向偏转角/(°)
    (左偏为正)
    力臂/m
    (遵循机体坐标系)
    矢量尾喷管 TCNmax=80000 δCN∈[0, 90] δCNy∈[-12, 12] xCN=-6.01
    升力风扇 TLFmax=89000 δLF∈[-20, 60] δLFy∈[-12, 12] xLF=3.57
    滚转控制喷管 TRNmax=17330 xRN=-1.91
    yRRN=-yLRN=2
    下载: 导出CSV

    表  2  V/STOL飞机悬停/平移模式的控制策略

    Table  2.   Control strategy for V/STOL aircraft in hover/translation mode

    控制通道 控制策略
    姿态控制 滚转 ①左、右滚转控制喷管之间不同推力的转换
    俯仰 ②升力风扇与矢量尾喷管之间不同推力的转换
    ③升力风扇与矢量尾喷管在对称平面内的偏转
    ④升力风扇与矢量尾喷管之间不同推力的转换与各自的偏转同时作用
    偏航 ⑤升力风扇与矢量尾喷管的侧向偏转
    位置控制 纵向 ③升力风扇与矢量尾喷管在对称平面内的偏转
    侧向 ⑤升力风扇与矢量尾喷管的侧向偏转
    法向 ⑥保持飞机俯仰力矩平衡的条件下,改变飞机的总推力
    注:对于纵向通道,若仅改变推力的大小,无法实施控制;对于法向通道,若仅改变推力的方向,飞机会掉高度,无法进行有效控制。
    下载: 导出CSV
  • [1] 索德军, 梁春华, 张世福, 等.S/VTOL战斗机及其推进系统的技术研究[J].航空发动机, 2014, 40(4):7-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201404002

    SUO D J, LIANG C H, ZHANG S F, et al.Technology of short/vertical takeoff and landing fighter and propulsion system[J].Aeroengine, 2014, 40(4):7-13(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201404002
    [2] MADDOCK I A, HIRSCHBERG M J.The quest for stable jet borne vertical lift: ASTOVL to F-35 STOVL: AIAA-2011-6999[R].Reston: AIAA, 2011.
    [3] WANG X Y, ZHU J H, ZHANG Y J.Dynamics modeling and analysis of thrust-vectored V/STOL aircraft[C]//Proceedings of the 32nd Chinese Control Conference.Piscataway, NJ: IEEE Press, 2013: 1825-1830.
    [4] TIAN Y, HE Y, LI X Y, et al.Simulation testing method of V/STOL flight control strategy[C]//Proceedings of the 10th World Congress on Intelligent Control and Automation.Piscataway, NJ: IEEE Press, 2012: 1969-1975.
    [5] HAUSER J, SASTRY S, MEYER G.Nonlinear control design for slightly non-minimum phase systems:Application to V/STOL aircraft[J].Automatica, 1992, 28(4):665-679. doi: 10.1016/0005-1098(92)90029-F
    [6] LIN F, ZHANG W, BRANDT R D.Robust hovering control of a PVTOL aircraft[J].IEEE Transactions on Control Systems Technology, 1999, 7(3):343-351. doi: 10.1109/87.761054
    [7] CHWA D.Fuzzy adaptive output feedback tracking control of VTOL aircraft with uncertain input coupling and input-dependent disturbances[J].IEEE Transactions on Fuzzy Systems, 2015, 23(5):1505-1518. doi: 10.1109/TFUZZ.2014.2362554
    [8] CARLOS A I, MIGUEL S S C, JULIO M M, et al.Output feedback stabilization for the PVTOL aircraft system based on an exact differentiator[J].Journal of Intelligent and Robotic Systems, 2018, 90(3-4):443-454. doi: 10.1007/s10846-017-0660-0
    [9] FAN Y, ZHU J H, MENG X Y, et al.Intelligent method based coordinated integrated flight control of a tailless STOVL[C]//Proceedings of the 8th World Congress on Intelligent Control and Automation.Piscataway, NJ: IEEE Press, 2010: 85-90.
    [10] ZHANG Y, ZUO J, ZHANG B.Modularized modeling and inversed dynamics control design for a lift-fan UAV in hover[C]//Proceedings of the IEEE International Conference on Information and Automation.Piscataway, NJ: IEEE Press, 2013: 570-575.
    [11] KUANG M C, ZHU J H.Hover control of a thrust-vectoring aircraft[J].Science China Information Sciences, 2015, 58(7):1-5. http://www.cnki.com.cn/Article/CJFDTotal-JFXG201507016.htm
    [12] GUO B Z, ZHAO Z L.On convergence of nonlinear active disturbance rejection for SISO systems[C]//Proceedings of the 24th Chinese Control and Decision Conference.Piscataway, NJ: IEEE Press, 2012: 3507-3512.
    [13] QI X H, LI J, XIA Y Q, et al.On the robust stability of active disturbance rejection control for SISO systems[J].Circuits, Systems, and Signal Processing, 2017, 36(1):65-81. doi: 10.1007/s00034-016-0302-y
    [14] XUE W, HUANG Y.Performance analysis of 2-DOF tracking control for a class of nonlinear uncertain systems with discontinuous disturbances[J].International Journal of Robust Nonlinear Control, 2018, 28(4):1456-1473. doi: 10.1002/rnc.v28.4
    [15] LI Z Y, LI X M, ZHOU Z Y.Active disturbance rejection controller for loitering unit with parameter uncertainty[C]//Proceedings of the 16th International Conference on Control, Automation and Systems.Piscataway, NJ: IEEE Press, 2016: 140-144.
    [16] LONG Y, DU Z J, CONG L, et al.Active disturbance rejection control based human gait tracking for lower extremity rehabilitation exoskeleton[J].ISA Transactions, 2017, 67:389-397. doi: 10.1016/j.isatra.2017.01.006
    [17] GAO Z Q.Scaling and bandwidth-parameterization based controller tuning[C]//Proceedings of the American Control Conference.Piscataway, NJ: IEEE Press, 2003: 4989-4996.
    [18] ZHENG Q, GAO Z Q, GAO L Q.On stability analysis of active disturbance rejection control for nonlinear time-varying plants with unknown dynamics[C]//Proceedings of the 46th IEEE Conference on Decision and Control.Piscataway, NJ: IEEE Press, 2007: 3501-3506.
    [19] 高阳, 吴文海, 高丽.高阶不确定非线性系统的线性自抗扰控制[J/OL].控制与决策, (2018-10-12)[2018-11-02].http://kns.cnki.net/KCMS/detail/21.1124.TP.20181012.1727.010.html.

    GAO Y, WU W H, GAO L.Linear active disturbance rejection control for high-order nonlinear systems with uncertainty[J/OL].Control and Decision, (2018-10-12)[2018-11-02].http://kns.cnki.net/KCMS/detail/21.1124.TP.20181012.1727.010.html(in Chinese).
    [20] FRANKLIN J A.Revised simulation model of the control system, displays, and propulsion system for a ASTOVL lift fan aircraft: NASA-TM-112208[R].Washington, D.C.: NASA, 1997.
    [21] BIRCKELBAW L G, MCNEILL W E, WARDWELL D A.Aerodynamics model for a generic ASTOVL lift-fan aircraft: NASA-TM-110347[R].Washington, D.C.: NASA, 1995.
    [22] GUO B Z, ZHAO Z L.On convergence of tracking differentiator and application to frequency estimation of sinusoidal signals[C]//Proceedings of the 8th Asian Control Conference.Piscataway, NJ: IEEE Press, 2011: 1470-1475.
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  407
  • HTML全文浏览量:  4
  • PDF下载量:  869
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-25
  • 录用日期:  2019-02-02
  • 刊出日期:  2019-09-20

目录

    /

    返回文章
    返回
    常见问答