留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

同轴旋转倒置圆台环隙间流动特性分析

鲍锋 卢愿 曾华轮 涂立

鲍锋, 卢愿, 曾华轮, 等 . 同轴旋转倒置圆台环隙间流动特性分析[J]. 北京航空航天大学学报, 2020, 46(1): 1-12. doi: 10.13700/j.bh.1001-5965.2019.0170
引用本文: 鲍锋, 卢愿, 曾华轮, 等 . 同轴旋转倒置圆台环隙间流动特性分析[J]. 北京航空航天大学学报, 2020, 46(1): 1-12. doi: 10.13700/j.bh.1001-5965.2019.0170
BAO Feng, LU Yuan, ZENG Hualun, et al. Interannular flow characteristics of coaxial rotational conical cylinder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 1-12. doi: 10.13700/j.bh.1001-5965.2019.0170(in Chinese)
Citation: BAO Feng, LU Yuan, ZENG Hualun, et al. Interannular flow characteristics of coaxial rotational conical cylinder[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 1-12. doi: 10.13700/j.bh.1001-5965.2019.0170(in Chinese)

同轴旋转倒置圆台环隙间流动特性分析

doi: 10.13700/j.bh.1001-5965.2019.0170
基金项目: 

国家自然科学基金 11072206

福建省自然科学基金 2012J01023

详细信息
    作者简介:

    鲍锋  男, 博士, 教授, 博士生导师。主要研究方向:流体力学

    卢愿  女, 硕士研究生。主要研究方向:流体力学

    曾华轮  男, 硕士研究生。主要研究方向:流体力学

    涂立  男, 硕士研究生。主要研究方向:流体力学

    通讯作者:

    鲍锋, E-mail:fbao@xmu.edu.cn

  • 中图分类号: V211.76

Interannular flow characteristics of coaxial rotational conical cylinder

Funds: 

National Natural Science Foundation of China 11072206

Natural Science Foundation of Fujian Province of China 2012J01023

More Information
  • 摘要:

    针对同轴旋转倒置圆台环隙间流体复杂流动问题, 对其环隙间流动特性进行了实验研究。重点进行染色液流动显示实验和PIV流场测速实验, 对实验结果做定性及定量分析, 研究内筒转速和环隙宽度对环隙间流动特性的影响。染色液流动显示实验和PIV流场测速实验分别定性和定量地展现了环隙间螺旋涡的产生及变化过程。对不同内筒转速和环隙宽度下的螺旋涡涡心运动周期进行分析, 结果表明, 内筒转速升高, 周期减小;环隙宽度增大, 周期增大。运用瞬时流动和时均流场解析了环隙间螺旋涡运动产生机制, 探究内筒转速和环隙宽度对3种雷诺应力大小的影响与分布情况。内筒转速变化, 雷诺径向正应力始终最大;环隙宽度变化, 雷诺切应力始终最小。

     

  • 图 1  同轴旋转倒置圆台装置

    Figure 1.  Coaxial rotational conical cylinder devices

    图 2  实验流程

    Figure 2.  Flowchart of experiment

    图 3  d=14 mm, n=50 pulses/s时螺旋涡变化

    Figure 3.  Variation of spiral vortex (d=14 mm, n=50 pulses/s)

    图 4  d=14 mm, n=300 pulses/s时螺旋涡变化

    Figure 4.  Variation of spiral vortex (d=14 mm, n=300 pulses/s)

    图 5  d=14 mm, n=300 pulses/s时螺旋涡运动周期

    Figure 5.  Period of motion of spiral vortex(d=14 mm, n=300 pulses/s)

    图 6  d=14 mm, 内筒转速不同时螺旋涡运动周期

    Figure 6.  Period of motion of spiral vortices under different inner cylinder speed (d=14 mm)

    图 7  n=300 pulses/s, 环隙宽度不同时螺旋涡运动周期

    Figure 7.  Period of motion of spiral vortices under different annular width (n=300 pulses/s)

    图 8  d=14 mm, 内筒转速不同时的时均流场

    Figure 8.  Time-averaged flow field under different inner cylinder speeds (d=14 mm)

    图 9  n=500 pulses/s, 环隙宽度不同时的时均流场

    Figure 9.  Time-averaged flow field under different annular width (n=500 pulses/s)

    图 10  三维基态流[8]

    Figure 10.  Three-dimensional ground state flow[8]

    图 11  d=14 mm, 不同内筒转速时的雷诺应力分布

    Figure 11.  Reynolds stress distribution under different inner cylinder speeds (d=14 mm)

    图 12  n=300 pulses/s, 不同环隙宽度时的雷诺应力分布

    Figure 12.  Reynolds stress distribution under different annular width (n=300 pulses/s)

    图 13  d=14 mm, 内筒转速不同时中轴线上雷诺应力分布

    Figure 13.  Reynolds stress distribution on midline under different inner cylinder speeds (d=14 mm)

  • [1] TAYLOR G I.Stability of a viscous liquid contained between two rotating cylinders[J].Philosophical Transactions of the Royal Society of London, 1923, 223(718):289-343. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S002211206400091X
    [2] DANIEL C, KUNIHIKO T.Two-dimensional compressible viscous flow around a circular cylinder[J].Journal of Fluid Mechanics, 2015, 785:349-371. doi: 10.1017/jfm.2015.635
    [3] 韩晓婷, 常青, 毛玉红, 等.Taylor-Couette流场数值模拟及絮凝效果研究[J].环境科学学报, 2013, 33(6):1637-1641. http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201306017

    HAN X T, CHANG Q, MAO Y H, et al.Numerical simulation and flocculation efficiencies of Taylor-Couette flow[J].Acta Scientiae Circumstantiae, 2013, 33(6):1637-1641(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hjkxxb201306017
    [4] 毛玉红.流场涡形态对混凝效果的影响研究[D].兰州: 兰州交通大学, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10732-1017235819.htm

    MAO Y H.A study of the influence of the vortices regime on the coagulation effects[D].Lanzhou: Lanzhou Jiaotong University, 2017(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10732-1017235819.htm
    [5] 朱鹣, 刘栋, 汤承, 等.沟槽深宽比对泰勒涡流影响的研究[J].工程热物理学报, 2016, 37(6):1208-1211. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201606012

    ZHU J, LIU D, TANG C, et al.Study of slit wall aspect ratio effect on the Taylor vortex flow[J].Journal of Engineering Thermophysics, 2016, 37(6):1208-1211(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201606012
    [6] 李华鹏.非平行间隙同轴旋转圆台间流体流动的数值模拟和理论分析[D].北京: 北京化工大学, 2014. http://cdmd.cnki.com.cn/Article/CDMD-10010-1015544470.htm

    LI H P.Numerical study and theoretical analysis of the flow between two rotating conical cylinders with non-parallel gap[D].Beijing: Beijing University of Chemical Technology, 2014(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10010-1015544470.htm
    [7] JIRKOVSKY L, BO-OT L M.Taylor-Couette flow and a molecule dependent transport equation[J].Physica A-Statistical Mechanics and Its Applications, 2014, 415:205-209. doi: 10.1016/j.physa.2014.08.004
    [8] WIMMER M.Taylor vortices at different geometries[M]//EGBERS C, PFISTER G.Physics of rotating fluids.Berlin: Springer, 1999: 194-212.
    [9] WIMMER M.An experimental investigation of Taylor vortex flow between conical cylinders[J].Journal of Fluid Mechanics, 2006, 292(1):205-227. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=S0022112095001492
    [10] 文普.同轴旋转圆台间流体流动的理论研究和数值模拟[D].北京: 北京化工大学, 2010. http://cdmd.cnki.com.cn/Article/CDMD-10010-2010169759.htm

    WEN P.Theoretical and numerical study of the flow between rotating conical cylinders[D].Beijing: Beijing University of Chemical Technology, 2010(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10010-2010169759.htm
    [11] 张晶晶.旋转液膜反应器内流体流动的动力学研究[D].北京: 北京化工大学, 2013. http://cdmd.cnki.com.cn/Article/CDMD-10010-1013273958.htm

    ZHANG J J.Dynamic study of the flow in the rotating liquid film rractor[D].Beijing: Beijing University of Chemical Technology, 2013(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10010-1013273958.htm
    [12] 张晶晶, 张艺晓, 许兰喜.旋转液膜反应器内流动机理研究[J].北京化工大学学报(自然科学版), 2013, 40(2):117-120. doi: 10.3969/j.issn.1671-4628.2013.02.022

    ZHANG J J, ZHANG Y X, XU L X.A study of the flow mechanism of rotating liquid film reactor[J].Journal of Beijing University of Chemical Technology(Natural Science Edition), 2013, 40(2):117-120(in Chinese). doi: 10.3969/j.issn.1671-4628.2013.02.022
    [13] 鲍锋, 曾华轮, 邹赫, 等.同轴旋转圆台环隙流动机制及实验研究[J].北京航空航天大学学报, 2018, 44(8):12-21. doi: 10.13700/j.bh.1001-5965.2017.0614

    BAO F, ZENG H L, ZOU H, et al.Mechanism and experimental research on fluid flow in annulus of coaxial rotating conical cylinders[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8):12-21(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0614
    [14] 王强.流动显示技术综述[J].电力环境保护, 1992, 8(4):32-35. http://d.old.wanfangdata.com.cn/Periodical/fhdd201811016

    WANG Q.Summarize of flow display technology[J].Environmental Protection of Electric Power, 1992, 8(4):32-35(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fhdd201811016
    [15] 李聪洲, 张新曙, 胡晓峰, 等.高雷诺数下多柱绕流特性研究[J].力学学报, 2018, 50(2):233-243. http://d.old.wanfangdata.com.cn/Periodical/lxxb201802004

    LI C Z, ZHANG X S, HU X F, et al.The study of flow past multiple cylinders at high Reynolds numbers[J].Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2):233-243(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/lxxb201802004
  • 加载中
图(13)
计量
  • 文章访问数:  473
  • HTML全文浏览量:  1
  • PDF下载量:  352
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-18
  • 录用日期:  2019-07-12
  • 刊出日期:  2020-01-20

目录

    /

    返回文章
    返回
    常见问答