留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

毫米波调频引信的优化二维FFT信号处理算法

郭晨曦 郝新红 栗苹 李国林 贾瑞丽

郭晨曦, 郝新红, 栗苹, 等 . 毫米波调频引信的优化二维FFT信号处理算法[J]. 北京航空航天大学学报, 2020, 46(1): 220-228. doi: 10.13700/j.bh.1001-5965.2019.0185
引用本文: 郭晨曦, 郝新红, 栗苹, 等 . 毫米波调频引信的优化二维FFT信号处理算法[J]. 北京航空航天大学学报, 2020, 46(1): 220-228. doi: 10.13700/j.bh.1001-5965.2019.0185
GUO Chenxi, HAO Xinhong, LI Ping, et al. Optimized two-dimensional FFT signal processing algorithm for millimeter-wave FM fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 220-228. doi: 10.13700/j.bh.1001-5965.2019.0185(in Chinese)
Citation: GUO Chenxi, HAO Xinhong, LI Ping, et al. Optimized two-dimensional FFT signal processing algorithm for millimeter-wave FM fuze[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 220-228. doi: 10.13700/j.bh.1001-5965.2019.0185(in Chinese)

毫米波调频引信的优化二维FFT信号处理算法

doi: 10.13700/j.bh.1001-5965.2019.0185
基金项目: 

国家自然科学基金 61871414

装备预研领域基金 61406190101

详细信息
    作者简介:

    郭晨曦  男, 硕士研究生。主要研究方向:引信信号处理技术

    郝新红  女, 博士, 副教授, 博士生导师。主要研究方向:中近程探测及控制技术、引信抗干扰技术

    栗苹  女, 博士, 教授, 博士生导师。主要研究方向:信息感知与对抗、智能探测与控制技术

    李国林  男, 博士, 教授, 博士生导师。主要研究方向:信息感知与对抗

    贾瑞丽  女, 高级工程师。主要研究方向:信息感知与对抗

    通讯作者:

    郝新红. E-mail: haoxinhong@bit.edu.cn

  • 中图分类号: TJ43+4.1

Optimized two-dimensional FFT signal processing algorithm for millimeter-wave FM fuze

Funds: 

National Natural Science Foundation of China 61871414

Equipment Pre-research Foundation of China 61406190101

More Information
  • 摘要:

    针对毫米波调频引信对目标距离速度信息联合估计的问题,提出一种基于相对距离评价函数优化的二维快速傅里叶变换(FFT)信号处理算法。首先,通过分析二维FFT算法实际测距测速精度与FFT点数的关系,建立了优化数学模型,利用相对距离评价函数对数学模型求解,得到FFT点数最优解;然后,采样将差频信号数据转换成二维数据矩阵,分别对矩阵的行列进行相应FFT变换;最后,通过提取峰值点的坐标估计目标的距离速度信息。结果表明:该算法有效提高了传统二维FFT算法的测距测速精度,并且满足实时性要求,能够同时提取毫米波调频引信的目标距离速度信息。

     

  • 图 1  毫米波调频引信原理框图

    Figure 1.  Block diagram of principle of millimeter-wave frequency modulated fuze

    图 2  发射信号、回波信号及差频信号时频特性

    Figure 2.  Time-frequency characteristics of emission signal, echo signal and beat signal

    图 3  二维FFT算法提取信息方法原理示意图

    Figure 3.  Schematic diagram of two-dimensional FFT algorithm principle for extracting information

    图 4  理论测距精度与调制频偏的关系

    Figure 4.  Relationship between theoretical ranging accuracy and modulation frequency offset

    图 5  实际测距精度与距离维FFT点数的关系

    Figure 5.  Relationship between practical ranging accuracy and distance-dimensional FFT point number

    图 6  理论测速精度与调制周期数的关系

    Figure 6.  Relationship between theoretical velocity measurement accuracy and number of modulation periods

    图 7  实际测速精度与距离维FFT点数的关系

    Figure 7.  Relationship between practical velocity measurement accuracy and distance-dimensional FFT point number

    图 8  实际测速精度与速度维FFT点数的关系

    Figure 8.  Relationship between practical velocity measurement accuracy and velocity-dimensional FFT point number

    图 9  实际测速精度与距离维和速度维FFT点数的联合关系

    Figure 9.  Joint relationship between practical velocity measurement accuracy and distance-dimensional and velocity-dimensional FFT point number

    图 10  基于相对距离评价函数的优化算法流程图

    Figure 10.  Flowchart of optimization algorithm based on relative distance evaluation function

    图 11  基于相对距离评价函数的最优解

    Figure 11.  Optimal solution based on relative distance evaluation function

    图 12  传统理想点法与本文算法的优化性能比较

    Figure 12.  Comparison of optimal performance between traditional ideal point method and proposed algorithm

    图 13  信噪比增益与距离维和速度维FFT点数的联合关系

    Figure 13.  Joint relationship between signal-to-noise ratio gain and distance-dimensional and velocity-dimensional FFT point number

    图 14  点目标下毫米波调频引信差频信号Simulink模型

    Figure 14.  Simulink model of beat signal of millimeter-wave frequency modulated fuze under condition of point target

    图 15  差频信号的时域仿真波形

    Figure 15.  Time domain simulation waveform of beat signal

    图 16  距离维FFT频谱图

    Figure 16.  Range-dimensional FFT spectrogram

    图 17  速度维FFT频谱图

    Figure 17.  Velocity-dimensional FFT spectrogram

    图 18  算法实现所用FPGA资源

    Figure 18.  FPGA resource used for algorithm implementation

    图 19  算法功能仿真时序图

    Figure 19.  Sequence chart of algorithm function simulation

    表  1  优化前后仿真测试结果对比

    Table  1.   Comparison of simulation test results before and after optimization

    参数 优化前 优化后
    采样点数 N=64,M=256 N=49,M=123
    算法复杂度 2.2×105 7.6×104
    测距精度/m 0.383 0.383
    测速精度/(m·s-1) 5.18 5.18
    下载: 导出CSV

    表  2  距离维FFT IP核延时与FFT点数的关系

    Table  2.   Relationship between distance-dimensional FFT IP core delay and number of FFT points

    距离维IP核延时 距离维FFT点数
    56Tclk 8
    269Tclk 64
    860Tclk 256
    下载: 导出CSV
  • [1] 岛新煜, 高敏.毫米波近炸引信发展现状及关键技术[J].飞航导弹, 2018(5):86-90. http://d.old.wanfangdata.com.cn/Periodical/fhdd201805018

    DAO X Y, GAO M.Development status and key technologies of millimeter wave proximity fuze[J].Aerodynamic Missile Journal, 2018(5):86-90(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/fhdd201805018
    [2] ANGHEL A, VASILE G, CACOVEANU R, et al.Short-range wideband FMCW radar for millimetric displacement measurements[J].IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(9):5633-5642. http://cn.bing.com/academic/profile?id=326470d0d8f56d1db46e5c793c31b7c5&encoded=0&v=paper_preview&mkt=zh-cn
    [3] 袁汉钦, 张向龙.基于WVD的调频引信瞬时频率估计算法[J].海军航空工程学院学报, 2011, 26(3):301-304. doi: 10.3969/j.issn.1673-1522.2011.03.014

    YUAN H Q, ZHANG X L.Instantaneous frequency estimation of frequency modulated fuze based on WVD[J].Journal of Naval Aeronautical and Astronautical University, 2011, 26(3):301-304(in Chinese). doi: 10.3969/j.issn.1673-1522.2011.03.014
    [4] CHOI J H, JANG J H, LEE J H, et al.Implementation of signal processing algorithms for an FMCW radar altimeter[J].The Journal of Korean Institute of Electromagnetic Engineering and Science, 2015, 26(6):555-563. doi: 10.5515/KJKIEES.2015.26.6.555
    [5] 梁远, 刘芒龙, 周祖国.基于脉内调频的无线电引信信号处理方法[J].探测与控制学报, 2014, 36(2):27-30. http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201402010

    LIANG Y, LIU M L, ZHOU Z G.Signal processing method of radio fuze based on intra-pulse frequency modulation[J].Journal of Detection & Control, 2014, 36(2):27-30(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tcykzxb201402010
    [6] 李鑫.谐波比较式调频多普勒引信信号处理技术[D].南京: 南京理工大学, 2009: 7-9. http://cdmd.cnki.com.cn/Article/CDMD-10288-2009197103.htm

    LI X.Signal processing technology of harmonic comparing frequency modulated doppler fuze[D].Nanjing: Nanjing University of Technology, 2009: 7-9(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10288-2009197103.htm
    [7] 赵惠昌.无线电引信设计原理与方法[M].北京:国防工业出版社, 2012:56-57.

    ZHAO H C.Fundamentals and methodology of radio fuze[M].Beijing:National Defense Industry Press, 2012:56-57(in Chinese).
    [8] RALPH D K.A note on the theory of scattering from an irregular surface[J].IEEE Transactions on Antenna and Propagation, 1966, 14(1):77-82. doi: 10.1109/TAP.1966.1138626
    [9] DONALD E B.Rough surface scattering based on the specular point theory[J].IEEE Transactions on Antenna and Propagation, 1968, 16(4):449-454. doi: 10.1109/TAP.1968.1139220
    [10] EDISON A R, MOORE R K, WARNER B D.Radar terrain return measured at near-vertical incidence[J].IEEE Transactions on Antenna and Propagation, 1960, 8(3):246-254. doi: 10.1109/TAP.1960.1144843
    [11] MOORE R K.Specular reflection and scatter for a satellite altimeter[J].IEEE Transactions on Aerospace and Electronic Systems, 1977, 13(5):544-546. http://cn.bing.com/academic/profile?id=dd9ac6b49561cb46bd6c2e3e86122aca&encoded=0&v=paper_preview&mkt=zh-cn
    [12] 孔志杰, 郝新红, 栗苹, 等.调频引信谐波时序检测抗干扰方法及实现[J].北京航空航天大学学报, 2018, 44(3):549-555. doi: 10.13700/j.bh.1001-5965.2017.0224

    KONG Z J, HAO X H, LI P, et al.Harmonic timing sequence detection anti-jamming method and its implementation for FM fuze[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3):549-555(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0224
    [13] 李硕, 王茜倩.基于FPGA的二维FFT实现[J].信号处理, 2012, 28(12A):73-77. http://d.old.wanfangdata.com.cn/Conference/7951826

    LI S, WANG X Q.Implementation of two-dimensional FFT based on FPGA[J].Signal Processing, 2012, 28(12A):73-77(in Chinese). http://d.old.wanfangdata.com.cn/Conference/7951826
    [14] 杨伍梅, 刘陶文.基于MATLAB的多目标规划问题的理想点法求解[J].湖南城市学院学报, 2017, 26(4):60-63. doi: 10.3969/j.issn.1672-7304.2017.04.0013

    YANG W M, LIU T W.Signal processing method of radio fuze based on intra-pulse frequency modulation[J].Journal of Hunan City University, 2017, 26(4):60-63(in Chinese). doi: 10.3969/j.issn.1672-7304.2017.04.0013
    [15] 王月鹏, 赵国庆.二维FFT算法在LFMCW雷达信号处理中的应用及其性能分析[J].电子科技, 2005(5):25-28. http://d.old.wanfangdata.com.cn/Periodical/dzkj200505007

    WANG Y P, ZHAO G Q.Application and performance analysis of two-dimensional FFT algorithms in LFMCW radar signal processing[J].Electronic Science and Technology, 2005(5):25-28(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dzkj200505007
    [16] Xilinx.Spartan-6.Family overview[EB/OL].(2011-10-26)[2019-05-01].https://www.xilinx.com/support/documentation/data_sheets/ds160.pdf.
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  425
  • HTML全文浏览量:  13
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-04-23
  • 录用日期:  2019-07-28
  • 刊出日期:  2020-01-20

目录

    /

    返回文章
    返回
    常见问答