留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

航模舵机的动态特性测试与系统辨识

孙玉凯 张仁嘉 吴志刚 杨超 杨阳

孙玉凯, 张仁嘉, 吴志刚, 等 . 航模舵机的动态特性测试与系统辨识[J]. 北京航空航天大学学报, 2020, 46(2): 294-303. doi: 10.13700/j.bh.1001-5965.2019.0202
引用本文: 孙玉凯, 张仁嘉, 吴志刚, 等 . 航模舵机的动态特性测试与系统辨识[J]. 北京航空航天大学学报, 2020, 46(2): 294-303. doi: 10.13700/j.bh.1001-5965.2019.0202
SUN Yukai, ZHANG Renjia, WU Zhigang, et al. Dynamic property test and system identification of model aircraft actuators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 294-303. doi: 10.13700/j.bh.1001-5965.2019.0202(in Chinese)
Citation: SUN Yukai, ZHANG Renjia, WU Zhigang, et al. Dynamic property test and system identification of model aircraft actuators[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 294-303. doi: 10.13700/j.bh.1001-5965.2019.0202(in Chinese)

航模舵机的动态特性测试与系统辨识

doi: 10.13700/j.bh.1001-5965.2019.0202
基金项目: 

国家自然科学基金 11672018

详细信息
    作者简介:

    孙玉凯  男, 博士研究生。主要研究方向:气动弹性力学与主动控制

    张仁嘉  男, 博士, 工程师。主要研究方向:飞行器总体设计、气动弹性力学与主动控制

    吴志刚  男, 博士, 教授, 博士生导师。主要研究方向:气动弹性力学与主动控制

    杨超  男, 博士, 教授, 博士生导师。主要研究方向:气动弹性力学与主动控制

    杨阳  男, 博士研究生。主要研究方向:气动弹性力学与主动控制

    通讯作者:

    吴志刚. E-mail: wuzhigang@buaa.edu.cn

  • 中图分类号: V215.3

Dynamic property test and system identification of model aircraft actuators

Funds: 

National Natural Science Foundation of China 11672018

More Information
  • 摘要:

    航模飞机受机体质量、机体空间和设计成本的限制,选用的小型航模舵机大多缺乏相应的频响特性指标,须在使用前完成频响特性测试。考虑舵面惯性载荷和气动载荷对舵机特性的影响,设计了舵机频响特性测试平台,可对大部分航模舵机和小型伺服电机进行空载或带载测试。针对常用的三款舵机进行频响特性测试,并采用子空间辨识获得舵机准确的数学模型。通过三款舵机频响特性对比得出,即使舵机的标称扭矩满足使用要求,负载增加也会改变舵机的幅频特性;舵机中存在的时滞时长随负载变化。而航模舵机常用的50 Hz PWM信号,也限制了舵机的带宽。

     

  • 图 1  舵机频响特性测试系统框架

    Figure 1.  Framework of actuator frequency response characteristic test system

    图 2  舵机频响特性测试系统实物图

    Figure 2.  Photo of actuator frequency response characteristic test system

    图 3  舵机测试平台

    Figure 3.  Actuator test platform

    图 4  待测舵机安装模块放大图

    Figure 4.  Enlarged view of installation module of actuator to be tested

    图 5  舵面载荷模拟模块放大图

    Figure 5.  Enlarged view of control surface load simulation module

    图 6  矩形截面扭杆气动力模拟装置原理图

    Figure 6.  Schematic diagram of aerodynamic simulation device by a rectangular-section torsion bar

    图 7  舵面转动惯量示意图

    Figure 7.  Schematic diagram of rotational interia of control surface

    图 8  舵面惯性载荷模拟装置原理图

    Figure 8.  Schematic diagram of simulation device of rotational inertial loads of control surface

    图 9  JR SERVO DS8900G舵机

    Figure 9.  JR SERVO DS8900G actuator

    图 10  Hitec HS-7954SH舵机

    Figure 10.  Hitec HS-7954SH actuator

    图 11  MaxonMotor EC-4pole22-323218舵机

    Figure 11.  MaxonMotor EC-4pole22-323218 actuator

    图 12  无气动载荷时舵机A随扫频信号幅值变化的频响特性

    Figure 12.  Frequency response characteristics of Actuator A with sweep signal amplitude without aerodynamic load

    图 13  有气动载荷时舵机A随扫频信号幅值变化的频响特性

    Figure 13.  Frequency response characteristics of Actuator A with sweep signal amplitude with aerodynamic loads

    图 14  扫频幅值为5°时,有/无气动载荷下的舵机A频响特性

    Figure 14.  Frequency response characteristics of Actuator A under 5° sweep signal amplitude with/without aerodynamic load

    图 15  扫频幅值为5°时,有气动载荷下的舵机A频响函数曲线对比

    Figure 15.  Frequency response function curves identification of Actuator A under 5° sweep signal amplitude with aerodynamic loads

    图 16  无气动载荷时舵机B随扫频信号幅值变化的频响特性

    Figure 16.  Frequency response characteristics of Actuator B with sweep signal amplitude without aerodynamic load

    图 17  有气动载荷时舵机B随扫频信号幅值变化的频响特性

    Figure 17.  Frequency response characteristics of Actuator B with sweep signal amplitude with aerodynamic loads

    图 18  扫频幅值为5°时,有/无气动载荷下的舵机B频响特性

    Figure 18.  Frequency response characteristics of Actuator B under 5° sweep signal amplitude with/without aerodynamic load

    图 19  扫频幅值为5°时,有气动载荷下的舵机B频响函数曲线对比

    Figure 19.  Frequency response function curves identification of Actuator B under 5° sweep signal amplitude with aerodynamic loads

    图 20  无气动载荷时舵机C随扫频信号幅值变化的频响特性

    Figure 20.  Frequency response characteristics of Actuator C with sweep signal amplitude without aerodynamic load

    图 21  有气动载荷时舵机C随扫频信号幅值变化的频响特性

    Figure 21.  Frequency response characteristics of Actuator C with sweep signal amplitude with aerodynamic loads

    图 22  扫频幅值为7°时,有/无气动载荷下的舵机C频响特性

    Figure 22.  Frequency response characteristics of Actuator C under 7° sweep signal amplitude with/without aerodynamic load

    图 23  扫频幅值为7°时,有气动载荷下的舵机C频响函数曲线对比

    Figure 23.  Frequency response function curves identification of Actuator C under 7° sweep signal amplitude with aerodynamic loads

    表  1  舵机频响特性测试平台参数

    Table  1.   Parameters of actuator frequency response characteristic test platform

    参数 数值
    舵面转动惯量/(kg·mm) 2.40
    舵面铰链刚度/(N·m·(°)-1) 0.002 2
    下载: 导出CSV

    表  2  舵机频响特性测试参数

    Table  2.   Parameters of actuator frequency response characteristic test

    参数 航机A 航机B 航机C
    采样率/Hz 50 50 1 000
    扫频初始频率/Hz 0.2 0.1 0.1
    扫频终止频率/Hz 8 10 15
    步进步长/(Hz·次-1) 0.1 0.1 0.1
    下载: 导出CSV

    表  3  舵机频响特性测试结果

    Table  3.   Results of actuator frequency response characteristic test

    舵机 扫频幅值/(°) 无气动载荷带宽/Hz 有气动载荷带宽/Hz 时滞时长/s
    A 2 0.9 0.9 0.06~0.24
    3 >10 1.6
    4 >10 7.6
    5 >10 >10
    B 2 3.6 3.6 0.1
    3 3.2 2.9
    4 3.0 3.6
    5 2.6 2.9
    C 2 >15 >15 0.014
    3 12.5 12.5
    4 10.7 10.7
    5 9.6 9.6
    6 8.7 8.7
    7 8.1 8.1
    下载: 导出CSV
  • [1] 杨超.飞行器气动弹性原理[M].3版.北京:北京航空航天大学出版社, 2016:203-208.

    YANG C.Princple of aircraft aeroelasticity[M].3rd ed.Beijing:Beihang University Press, 2016:203-208(in Chinese).
    [2] 陈怀民, 庄皓玥, 马松辉, 等.基于试验的电动舵机模型辨识[J].航空计算技术, 2014, 44(4):6-9. doi: 10.3969/j.issn.1671-654X.2014.04.002

    CHEN H M, ZHUANG H Y, MA S H, et al.Model identification of electromechanical actuator based on tests[J].Aeronautical Computing Technique, 2014, 44(4):6-9(in Chinese). doi: 10.3969/j.issn.1671-654X.2014.04.002
    [3] 马敏, 周盛春, 王伯波, 等.关于飞行器的电动舵机伺服系统参数辨识[J].计算机仿真, 2016, 33(2):88-92. doi: 10.3969/j.issn.1006-9348.2016.02.019

    MA M, ZHOU S C, WANG B B, et al.Parameter identification of electric actuator servo system on aircraft[J].Computer Simulation, 2016, 33(2):88-92(in Chinese). doi: 10.3969/j.issn.1006-9348.2016.02.019
    [4] 朱萌, 曹国武, 张志伟, 等.基于Levy法的气动舵机参数辨识[J].弹箭与制导学报, 2011, 31(6):69-72. doi: 10.3969/j.issn.1673-9728.2011.06.020

    ZHU M, CAO G W, ZHANG Z W, et al.The system identification of pneumatic actuator based on Levy method[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2011, 31(6):69-72(in Chinese). doi: 10.3969/j.issn.1673-9728.2011.06.020
    [5] 章家保, 刘慧, 贾宏光, 等.电动舵机伺服系统的模型辨识及其校正[J].光学精密工程, 2008, 16(10):1971-1976. doi: 10.3321/j.issn:1004-924X.2008.10.030

    ZHANG J B, LIU H, JIA H G, et al.Model identification and corrector design for servo system of electromechanical actuator[J].Optics and Precision Engineering, 2008, 16(10):1971-1976(in Chinese). doi: 10.3321/j.issn:1004-924X.2008.10.030
    [6] 高素军.基于实测数据的系统辨识及实验研究[D].哈尔滨: 哈尔滨工业大学, 2006: 25-38. http://cdmd.cnki.com.cn/Article/CDMD-10213-2006171627.htm

    GAO S J.Research and experiment of system identification based on real-gained data[D].Harbin: Harbin Institute of Technology, 2006: 25-38(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-2006171627.htm
    [7] MACIEJOWSKI J M.Guaranteed stability with subspace methods[J].System and Control Letters, 1995, 26(2):153-156. doi: 10.1016/0167-6911(95)00010-7
    [8] OVERSCHEE P V, MOOR B D.Subspace identification for linear systems[M].Dordrecht:Kluwer Academic Publishers, 1996:8-11.
    [9] OVERSCHEE P V, MOOR B D.A unifying theorem for three subspace system identification algorithms[J].Automatica, Special Issue on Trends in System Identification, 1995, 31(12):1853-1864. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026137696
    [10] DE CALLAFON R, DE ROOVER D, VAN DEN HOF P.Multivariable least squares frequency domain identification using polynomial matrix fraction descriptions[C]//Proceedings of the 35th IEEE Conference on Decision and Control.Piscataway, NJ: IEEE Press, 1996, 2: 2030-2035. https://www.researchgate.net/publication/2432455_Multivariable_Least_Squares_Frequency_Domain_Identication_using_Polynomial_Matrix_Fraction_Descriptions
    [11] LJUNG L.System identification:Theory for the user[M].2nd ed.Upper Saddle River:Prentice Hall, 1999.
    [12] CLAES M, GRAHAM M R, CALLAFON R A.Frequency domain subspace identification of a tape servo system[J].Microsystem Technologies, 2007, 13(8-10):1439-1447. doi: 10.1007/s00542-007-0389-y
    [13] 张仁嘉.飞行器气动伺服弹性若干关键问题研究[D].北京: 北京航空航天大学, 2015: 101-102.

    ZHANG R J.Extensional research on several critical aeroservoelastic problems of air vehicles[D].Beijing: Beihang University, 2015: 101-102(in Chinese).
    [14] MCKELVEY T, AKCAY H, LJUNG L.Subspace-based multivariable system identification from frequency response data[J].IEEE Transactions on Automatic Control, 1996, 41(7):960-979. doi: 10.1109/9.508900
    [15] 黄超.柔性飞翼飞机颤振主动抑制系统建模、设计与验证[D].北京: 北京航空航天大学, 2018: 89-90.

    HUANG C.Modeling, design and verification of active flutter suppression system acting on flexible flying wing aircraft[D].Beijing: Beihang University, 2018: 89-90(in Chinese).
  • 加载中
图(23) / 表(3)
计量
  • 文章访问数:  465
  • HTML全文浏览量:  6
  • PDF下载量:  204
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-05
  • 录用日期:  2019-08-03
  • 刊出日期:  2020-02-20

目录

    /

    返回文章
    返回
    常见问答