留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

含内热源的多孔方腔自然对流非正交MRT-LBM模拟

张莹 包进 过海龙 连小龙 黄逸宸 李培生

张莹, 包进, 过海龙, 等 . 含内热源的多孔方腔自然对流非正交MRT-LBM模拟[J]. 北京航空航天大学学报, 2020, 46(2): 241-251. doi: 10.13700/j.bh.1001-5965.2019.0218
引用本文: 张莹, 包进, 过海龙, 等 . 含内热源的多孔方腔自然对流非正交MRT-LBM模拟[J]. 北京航空航天大学学报, 2020, 46(2): 241-251. doi: 10.13700/j.bh.1001-5965.2019.0218
ZHANG Ying, BAO Jin, GUO Hailong, et al. Non-orthogonal multiple-relaxation-time lattice Boltzmann simulation of natural convection in porous square cavity with internal heat source[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 241-251. doi: 10.13700/j.bh.1001-5965.2019.0218(in Chinese)
Citation: ZHANG Ying, BAO Jin, GUO Hailong, et al. Non-orthogonal multiple-relaxation-time lattice Boltzmann simulation of natural convection in porous square cavity with internal heat source[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 241-251. doi: 10.13700/j.bh.1001-5965.2019.0218(in Chinese)

含内热源的多孔方腔自然对流非正交MRT-LBM模拟

doi: 10.13700/j.bh.1001-5965.2019.0218
基金项目: 

国家自然科学基金 51566012

国家自然科学基金 11562011

江西省自然科学基金 20181BAB206031

详细信息
    作者简介:

    张莹 女, 博士, 教授, 博士生导师。主要研究方向:复杂热流场介质

    李培生 男, 博士, 教授, 博士生导师。主要研究方向:生物质/煤燃烧及资源化利用。E-mail:nucdns1995z@163.com

    通讯作者:

    李培生. E-mail:nucdns1995z@163.com

  • 中图分类号: TB61+1

Non-orthogonal multiple-relaxation-time lattice Boltzmann simulation of natural convection in porous square cavity with internal heat source

Funds: 

National Natural Science Foundation of China 51566012

National Natural Science Foundation of China 11562011

Natural Science Foundation of Jiangxi Province, China 20181BAB206031

More Information
  • 摘要:

    为了增强多孔方腔内流体流动与传热效果,采用非正交多松弛格子Boltzmann方法(MRT-LBM)对含有内热源的多孔方腔自然对流传热现象进行了数值模拟。研究了不同冷源布置方案(Scheme A~Scheme F)、内热源结构形式(Case 1、Case 2、Case 3)、内热源位置(ab)、Darcy数、Rayleigh数等对多孔方腔内流体流动与传热的影响。计算结果表明:冷源布置方案对腔内流体流动与传热具有重要影响,当冷源左右对称布置时,腔内温度场及流场亦对称分布;在高Rayleigh数下采用Scheme A的双上部冷源布置方案能明显提高腔内的传热强度;内热源的形状对腔内对流传热影响很大,高Rayleigh数下,Case 3的布置方式更好。内热源的位置ab对腔内的传热影响明显,提出了热壁面平均Nusselt数与位置a的拟合关系式,存在最佳的位置aa=0.25),使得腔内的对流传热最强;热壁面平均Nusselt数亦随b值变化表现出特定的变化规律。随着b值的增加,热壁面平均Nusselt数呈现先增后减再增的趋势。

     

  • 图 1  物理模型

    Figure 1.  Physical model

    图 2  六种不同等温冷源边界布置方案

    Figure 2.  Six different isothermal cold source boundary arrangements

    图 3  不同方法流线及等温线图比较(Ra=106Da=10-4ε=0.4, Pr=1.0)

    Figure 3.  Comparison of streamlines and isotherms with different methods (Ra=106, Da=10-4, ε=0.4, Pr=1.0)

    图 4  六种不同等温边界布置下的等温线图和流线图

    Figure 4.  Isotherms and streamlines for six different isothermal boundary arrangements

    图 5  六种不同等温边界布置下的速度分布

    Figure 5.  Velocity profiles with six different isothermal boundary arrangements

    图 6  六种不同等温边界布置下热壁面平均Nusselt数随Darcy数变化

    Figure 6.  Variation of average Nusselt number at hot wall surface with Darcy number under six different isothermal boundary arrangements

    图 7  六种不同等温边界布置下热壁面平均Nusselt数随Rayleigh数变化

    Figure 7.  Variation of average Nusselt number at hot wall surface with Rayleigh number under six different isothermal boundary arrangements

    图 8  六种不同等温边界布置下热壁面局部Nusselt数变化

    Figure 8.  Variation of local Nusselt number at hot wall surface with six different isothermal boundary arrangements

    图 9  三种不同内热源结构形式下方腔内的流线图和等温线图

    Figure 9.  Streamlines and isotherms in square carity under three different internal heat source structures

    图 10  三种不同内热源结构形式下热壁面平均Nusselt数随Rayleigh数变化

    Figure 10.  Variation of average Nusselt number at hot wall surface with Rayleigh number in cavity under three different heat source structures

    图 11  三种不同内热源结构形式下的速度分布

    Figure 11.  Velocity profiles in cavity under three different internal heat source structures

    图 12  不同a值下方腔内的等温线图和流线图

    Figure 12.  Isotherms and streamlines in square cavity at different values of a

    图 13  不同a值下热壁面局部Nusselt数变化

    Figure 13.  Variation of local Nusselt number at hot wall surface under different a values

    图 14  热壁面平均Nusselt数随a值变化

    Figure 14.  Average Nusselt number at hot wall under different surface versus a values

    图 15  不同b值下方腔内的等温线图和流线图

    Figure 15.  Isotherms and streamlines in square cavity at different values of b

    图 16  不同b值下方腔水平中平面的速度分布

    Figure 16.  Velocity profiles in the horizontal mid-plane of square cavity under different b values

    图 17  热壁面平均Nusselt数随b值变化

    Figure 17.  Average Nusselt number at hot wall surface versus b values

    图 18  不同b值下热壁面局部Nusselt数变化

    Figure 18.  Variation of local Nusselt number at hot wall surface under different b values

    表  1  热壁面上平均Nusselt数

    Table  1.   Average Nusselt numbers at hot wall surface

    Da Ra ε Nuave 相对
    误差/%
    本文结果 文献[17]
    10-4 106 0.6 2.741 2.704 1.37
    10-4 105 0.6 1.088 1.071 1.59
    10-2 105 0.4 3.046 2.992 1.80
    10-2 5×105 0.4 5.048 4.982 1.32
    10-2 104 0.6 1.561 1.530 2.03
    下载: 导出CSV
  • [1] NIELD D A, BEJAN A.Convection in porous media[M].Hoboken:Wiley-Blackwell, 2013.
    [2] AHMED S E, HUSSEIN A K, MOHAMMED H A, et al.Viscous dissipation and radiation effects on MHD natural convection in a square enclosure filled with a porous medium[J].Nuclear Engineering and Design, 2014, 266:34-42. doi: 10.1016/j.nucengdes.2013.10.016
    [3] 邱伟国, 云和明, 陈宝明, 等.壁面覆盖部分多孔介质方腔自然对流流动的数值模拟[J].节能, 2014(11):19-23. http://d.old.wanfangdata.com.cn/Periodical/jien201411006

    QIU W G, YUN H M, CHEN B M, et al.Numerical simulation of natural convection flow in cavity with wall covering part of porous media[J].Energy Conservation, 2014(11):19-23(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jien201411006
    [4] YAACOB Z, HASAN M K.Nonstandard finite difference schemes for natural convection in an inclined porous rectangular cavity[C]//International Conference on Electrical Engineering and Informatics.Piscataway, NJ: IEEE Press, 2015: 665-669. https://www.researchgate.net/publication/308863904_Nonstandard_finite_difference_schemes_for_natural_convection_in_an_inclined_porous_rectangular_cavity
    [5] 郭照立, 郑楚光.格子Boltzmann方法的原理及应用[M].北京:科学出版社, 2009.

    GUO Z L, ZHENG C G.Theory and applications of lattice Boltzmann method[M].Beijing:Science Press, 2009(in Chinese).
    [6] MACHADO R.Numerical simulations of surface reaction in porous media with lattice Boltzmann[J].Chemical Engineering Science, 2012, 69(1):628-643. doi: 10.1016/j.ces.2011.11.037
    [7] SHOKOUHMAND H, JAM F, SALIMPOUR M R.Simulation of laminar flow and convective heat transfer in conduits filled with porous media using lattice Boltzmann method[J].International Communications in Heat and Mass Transfer, 2009, 36(4):378-384. doi: 10.1016/j.icheatmasstransfer.2008.11.016
    [8] 陆威, 王婷婷, 徐洪涛, 等.复合方腔顶盖驱动双扩散混合对流格子Boltzmann模拟[J].工程热物理学报, 2017, 38(3):640-647. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201703031

    LU W, WANG T T, XU H T, et al.Lattice Boltzmann simulation of double diffusive mixed convection in a lid-driven composite enclosure[J].Journal of Engineering Thermophysics, 2017, 38(3):640-647(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gcrwlxb201703031
    [9] HUELSZ G, RECHTMAN R.Heat transfer due to natural convection in an inclined square cavity using the lattice Boltzmann equation method[J].International Journal of Thermal Sciences, 2013, 65:111-119. doi: 10.1016/j.ijthermalsci.2012.09.009
    [10] ZHAO C Y, DAI L N, TANG G H, et al.Numerical study of natural convection in porous media(metals)using lattice Boltzmann method(LBM)[J].International Journal of Heat and Fluid Flow, 2010, 31(5):925-934. doi: 10.1016/j.ijheatfluidflow.2010.06.001
    [11] BOUARNOUNA K, BOUTRA A, RAGUI K, et al.Multiple-relaxation-time lattice Boltzmann model for flow and convective heat transfer in channel with porous media[J].Journal of Statistical Physics, 2019, 174(5):972-991. doi: 10.1007/s10955-018-02219-7
    [12] 李培生, 李伟, 张莹, 等.倾斜多孔方腔内自然对流非正交MRT-LB数值模拟[J].华南理工大学学报(自然科学版), 2018, 46(1):15-23. http://d.old.wanfangdata.com.cn/Periodical/hnlgdxxb201801003

    LI P S, LI W, ZHANG Y, et al.Lattice Boltzmann simulation of natural convection in an inclined porous cavity with a hot square obstacle[J].Journal of Harbin Engineering University(Natural Science Edition), 2018, 46(1):15-23(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hnlgdxxb201801003
    [13] BAYTAS A C, POP I.Free convection in a square porous cavity using a thermal nonequilibrium model[J].International Journal of Thermal Sciences, 2002, 41(9):861-870. doi: 10.1016/S1290-0729(02)01379-0
    [14] SAEID N H.Conjugate natural convection in a porous enclosure: Effect of conduction in one of the vertical walls[J].International Journal of Thermal Sciences, 2007, 46(6):531-539. doi: 10.1016/j.ijthermalsci.2006.08.003
    [15] AL-FARHANY K, TURAN A.Numerical study of double diffusive natural convective heat and mass transfer in an inclined rectangular cavity filled with porous medium[J].International Communications in Heat and Mass Transfer, 2012, 39(2):174-181. doi: 10.1016/j.icheatmasstransfer.2011.11.014
    [16] LIU Q, HE Y L, LI Q, et al.A multiple-relaxation-time lattice Boltzmann model for convection heat transfer in porous media[J].International Journal of Heat and Mass Transfer, 2014, 73:761-775. doi: 10.1016/j.ijheatmasstransfer.2014.02.047
    [17] LIU Q, HE Y L, DAWSON K A, et al.Lattice Boltzmann simulations of convection heat transfer in porous media[J].Physica A-Statistical Mechanics and Its Applications, 2017, 465:742-753. doi: 10.1016/j.physa.2016.08.010
  • 加载中
图(18) / 表(1)
计量
  • 文章访问数:  391
  • HTML全文浏览量:  0
  • PDF下载量:  353
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-10
  • 录用日期:  2019-07-05
  • 刊出日期:  2020-02-20

目录

    /

    返回文章
    返回
    常见问答