留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纤维增强型软体夹持器变形及末端接触力

顾苏程 王保兴 刘俊辰 李巍 曹毅

顾苏程, 王保兴, 刘俊辰, 等 . 纤维增强型软体夹持器变形及末端接触力[J]. 北京航空航天大学学报, 2020, 46(2): 447-456. doi: 10.13700/j.bh.1001-5965.2019.0251
引用本文: 顾苏程, 王保兴, 刘俊辰, 等 . 纤维增强型软体夹持器变形及末端接触力[J]. 北京航空航天大学学报, 2020, 46(2): 447-456. doi: 10.13700/j.bh.1001-5965.2019.0251
GU Sucheng, WANG Baoxing, LIU Juncheng, et al. Deformation and end contact force of fiber-reinforced soft gripper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 447-456. doi: 10.13700/j.bh.1001-5965.2019.0251(in Chinese)
Citation: GU Sucheng, WANG Baoxing, LIU Juncheng, et al. Deformation and end contact force of fiber-reinforced soft gripper[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 447-456. doi: 10.13700/j.bh.1001-5965.2019.0251(in Chinese)

纤维增强型软体夹持器变形及末端接触力

doi: 10.13700/j.bh.1001-5965.2019.0251
基金项目: 

江苏省“六大人才高峰”计划 ZBZZ-012

高等学校学科创新引智计划 B18027

江苏省研究生创新计划 SJCX18-0630

江苏省研究生创新计划 KYCX18-1846

详细信息
    作者简介:

    顾苏程  男,硕士研究生。主要研究方向:软体机器人

    王保兴  男,硕士研究生。主要研究方向:柔性机构学

    刘俊辰  男,硕士研究生。主要研究方向:混联机构动力学

    李巍  男,博士。主要研究方向:软体机器人

    曹毅  男,博士,教授。主要研究方向:软体机器人、并联机器人、混联机器人、柔性机器人

    通讯作者:

    曹毅. E-mail: caoyi@jiangnan.edu.cn

  • 中图分类号: TP241

Deformation and end contact force of fiber-reinforced soft gripper

Funds: 

The Six Talent Peaks Project in Jiangsu Province ZBZZ-012

"111"Project B18027

Postgraduate Research & Practice Innovation Program of Jiangsu Province SJCX18-0630

Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX18-1846

More Information
  • 摘要:

    针对目前软体机器人缺乏变形和接触力方面理论研究的问题,以软体夹持器为研究对象,开展了纤维增强型软体夹持器变形及末端接触力的研究。首先设计了气动软体夹持器,该夹持器由纤维增强型单向弯曲驱动器、接触气囊以及单元的连接装置组成;其次基于Yeoh模型、Neo-Hookean模型分别建立了弯曲驱动器驱动压强与弯曲变形圆心角的非线性数学模型和弯曲驱动器末端接触力理论模型;然后开展了软体夹持器变形和末端接触力的仿真及实验,结果证明了理论模型的正确性;最后进行了纤维增强结构对软体夹持器变形和末端接触力影响的研究,实验结果表明:纤维增强结构能大幅度提高软体夹持器的变形和末端接触力。上述研究为其他纤维增强型软体夹持器变形及末端接触力的研究提供了理论基础。

     

  • 图 1  纤维增强型软体夹持器结构示意图

    Figure 1.  Schematic diagram of structure of a fiber-reinforced soft gripper

    图 2  单向弯曲驱动器

    Figure 2.  Unidirectional bending actuator

    图 3  接触气囊

    Figure 3.  Contact airbag

    图 4  拉伸实验

    Figure 4.  Stretching experiment

    图 5  变形前后的单向弯曲驱动器的尺寸

    Figure 5.  Size of unidirectional bending actuator before and after deformation

    图 6  单向弯曲驱动器弯曲力矩分析

    Figure 6.  Analysis of unidirectional bending actuator bending torque

    图 7  单向弯曲驱动器弯曲仿真示意图

    Figure 7.  Schematic diagram of unidirectional bending actuator bending simulation

    图 8  软体夹持器制备流程示意图

    Figure 8.  Flowchart of manufacturing for a soft gripper

    图 9  实验平台

    Figure 9.  Experiment platform

    图 10  单向弯曲驱动器弯曲变形圆心角示意图

    Figure 10.  Schematic diagram of bending deformation central angle of unidirectional bending actuator

    图 11  单向弯曲驱动器弯曲变形圆心角的理论计算值、有限元仿真值和实验值

    Figure 11.  Theoretical calculation values, finite element simulation values and experimental values of bending deformation central angle of unidirectional bending actuator

    图 12  单向弯曲驱动器末端接触力实验

    Figure 12.  Experiment on end contact force of unidirectional bending actuator

    图 13  单向弯曲驱动器末端接触力的理论计算值、有限元仿真值和实验值

    Figure 13.  Theoretical calculation values, finite element simulation values and experimental values of end contact force of unidirectional bending actuator

    图 14  接触气囊仿真示意图

    Figure 14.  Schematic diagram of contact airbag simulation

    图 15  接触气囊末端接触力实验值与有限元仿真值对比

    Figure 15.  Comparison of end contact force of contact airbag between experiment and finite element simulation

    图 16  线圈匝数对单向弯曲驱动器弯曲变形圆心角的影响

    Figure 16.  Influence of coil number on bending deformation central angle of unidirectional bending actuator

    图 17  单向弯曲驱动器弯曲变形圆心角拟合曲线

    Figure 17.  Fitting curve with bending deformation central angle of unidirectional bending actuator

    图 18  单向弯曲驱动器末端接触力拟合曲线

    Figure 18.  Fitting curve with end contact force of unidirectional bending actuator

    表  1  单向弯曲驱动器结构参数

    Table  1.   Structure parameters of unidirectional bending actuator

    参数 数值
    驱动器空腔长度L1/mm 45
    驱动器总宽B/mm 30
    驱动器总高H/mm 10
    驱动器末端长度L2/mm 10
    驱动器接触端半径R/mm 10
    气囊壁厚t/mm 1
    线圈匝数N 15
    下载: 导出CSV

    表  2  接触气囊结构参数

    Table  2.   Contact airbag structure parameters

    参数 数值
    接触层气囊直径Dj/mm 25
    柱状固定末端直径Dz/mm 24
    双层气囊初始长度Lc/mm 10
    柱状固定末端长度Lz/mm 6
    气囊层间夹角θn/(°) 67
    下载: 导出CSV

    表  3  单向弯曲驱动器弯曲变形圆心角对比

    Table  3.   Comparison of bending deformation central angle of unidirectional bending actuator

    P/MPa θJ/(°) θF/(°) θS/(°)
    0.029 60.123 3 67.115 8 61.5
    0.030 66.747 3 69.290 0 65.0
    0.031 73.452 1 71.418 8 68.0
    0.032 80.234 4 73.547 9 71.5
    下载: 导出CSV

    表  4  单向弯曲驱动器末端接触力对比

    Table  4.   Comparison of end contact force of unidirectional bending actuator

    P/MPa FJ/N FF/N FS/N
    0.01 0.124 896 0.142 313 0.13
    0.02 0.449 792 0.513 339 0.49
    0.03 0.899 584 0.966 668 0.88
    0.04 1.324 480 1.479 03 1.38
    0.05 1.874 688 1.991 392 2.14
    下载: 导出CSV

    表  5  线圈匝数对单向弯曲驱动器弯曲程度的影响

    Table  5.   Influence of coil number on bending degree of unidirectional bending actuator

    N P/MPa θF/(°) θS/(°) 相对误差/%
    5 0.02 20.08 19.14 4.91
    10 0.02 39.69 37.23 6.61
    15 0.02 48.92 47.25 3.53
    16 0.02 49.85 47.38 5.21
    17 0.02 50.61 47.50 6.55
    18 0.02 51.34 47.61 7.83
    19 0.02 51.93 47.69 8.89
    20 0.02 52.14 47.73 9.24
    下载: 导出CSV

    表  6  纤维增强结构对单向弯曲驱动器弯曲程度的影响

    Table  6.   Influence of fiber-reinforced structure on bending degree of unidirectional bending actuator

    P/MPa θ1/(°) θ2/(°) 增大倍数
    0.01 6.93 24.14 3.48
    0.02 9.27 47.11 5.08
    0.03 12.35 69.29 5.61
    0.04 14.40 89.89 6.24
    0.05 16.12 107.89 6.69
    下载: 导出CSV

    表  7  纤维增强结构对单向弯曲驱动器末端接触力的影响

    Table  7.   Influence of fiber-reinforced structure on end contact force of unidirectional bending actuator

    P/MPa F1/N F2/N 增大倍数
    0.01 0.062 3 0.131 3 2.11
    0.02 0.213 3 0.488 0 2.29
    0.03 0.466 7 0.875 1 1.88
    0.04 0.679 0 1.382 8 2.04
    0.05 0.891 4 2.138 4 2.40
    下载: 导出CSV
  • [1] 李铁风, 李国瑞, 梁艺鸣, 等.软体机器人结构机理与驱动材料研究综述[J].力学学报, 2016, 242(4):756-766. http://d.old.wanfangdata.com.cn/Periodical/lxxb201604003

    LI T F, LI G R, LIANG Y M, et al.Study on structural mechanism and driving material of soft robot[J].Chinese Journal of Theoretical Applied Mechanics, 2016, 242(4):756-766(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/lxxb201604003
    [2] MAO S X, DONG E, JIN H.Gait study and pattern generation of a starfish-like soft robot with flexible rays actuated by SMAS[J].Journal of Bionic Engineering, 2014, 11(3):400-411. doi: 10.1016/S1672-6529(14)60053-6
    [3] TOLLEY M, SHEPHERD R, MOSADEGH B, et al.A resilient untethered soft robot[J].Soft Robotics, 2014, 1(3):213-223. doi: 10.1089/soro.2014.0008
    [4] 孙沂琳, 张秋菊, 陈宵燕.软体驱动器研究综述[J].机械设计, 2019, 36(2):5-18. http://d.old.wanfangdata.com.cn/Periodical/njydxyxb201804011

    SUN Y L, ZHANG Q J, CHEN X Y.Overview of soft-bodied actuators[J].Journal of Mechanical Design, 2019, 36(2):5-18(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/njydxyxb201804011
    [5] 姚建涛, 陈新博, 陈俊涛, 等.轮足式仿生软体机器人设计与运动分析[J].机械工程学报, 2019, 55(5):27-35. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201905004

    YAO J T, CHEN X B, CHEN J T, et al.Design and motion analysis of a wheel-foot bionic software robot[J].Journal of Mechanical Engineering, 2019, 55(5):27-35(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201905004
    [6] 樊继壮, 于庆国, 袁博文, 等.软体仿蛙游动机器人关节式气动致动器研制[J].机器人, 2018, 40(5):578-586. http://d.old.wanfangdata.com.cn/Periodical/jqr201805002

    FAN J Z, YU Q G, YUAN B W, et al.Development of a joint-like pneumatic actuator applied to soft frog-inspired swimming robot[J].Robot, 2018, 40(5):578-586(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jqr201805002
    [7] 胡兵兵, 金国庆.一种仿虎甲幼虫的多驱动器软体机器人的设计与制造[J].机器人, 2018, 40(5):626-633. http://d.old.wanfangdata.com.cn/Periodical/jqr201805007

    HU B B, JIN G Q.Design and fabrication of a multi-actuator soft robot inspired by young tiger beetle[J].Robot, 2018, 40(5):626-633(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jqr201805007
    [8] 董红兵.一种充气式软体全向弯曲模块关键技术研究[D].哈尔滨: 哈尔滨工业大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10213-1016774803.htm

    DONG H B.Research on key technologies of a pneumatic soft omnidirectional bending module[D]. Harbin: Harbin Institute of Technology, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10213-1016774803.htm
    [9] YAP H, KAMALDIN N, LIM J, et al.A magnetic resonance compatible soft wearable robotic glove for hand rehabilitation and brain imaging[J].IEEE Transactions on Neural Systems & Rehabilitation Engineering, 2017, 6(25):782-793. http://cn.bing.com/academic/profile?id=5303fab077b36993cb809b90a9a9331f&encoded=0&v=paper_preview&mkt=zh-cn
    [10] NORITSUGU T, KUBOTA M, YOSHIMATSU S.Development of pneumatic rotary soft actuator made of silicon rubber[J].Journal of Robotics and Mechatronics, 2001, 13(1):17-22. doi: 10.20965/jrm.2001.p0017
    [11] 徐淼鑫.气压驱动软体夹持装置研究[D].南京: 南京理工大学, 2015. http://cdmd.cnki.com.cn/Article/CDMD-10288-1015365968.htm

    XU M X.Research on pneumatic driving software clamping device[D].Nanjing: Nanjing University of Science and Technology, 2015(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10288-1015365968.htm
    [12] 费燕琼, 庞武, 于文博.气压驱动软体机器人运动研究[J].机械工程学报, 2017, 53(13):14-18. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201713002

    FEI Y Q, PANG W, YU W B.Study on motion of air-driven soft robot[J].Journal of Mechanical Engineering, 2017, 53(13):14-18(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201713002
    [13] CONNOLLY F, WALSH C J, BERTOLDI K.Automatic design of fiber-reinforced soft actuators for trajectory matching[J].Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(1):51-56. doi: 10.1073/pnas.1615140114
    [14] 张忠强, 邹娇, 丁建宁, 等.软体机器人驱动研究现状[J].机器人, 2018, 40(5):648-659. http://d.old.wanfangdata.com.cn/Periodical/jqr201805010

    ZHANG Z Q, ZOU J, DING J N, et al.Research status of the soft robot driving[J].Robot, 2018, 40(5):648-659(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jqr201805010
    [15] PEDRO P, ANANDA C, RAFAEL P B, et al.Closed structure soft robotic gripper[C]//IEEE International Conference on Soft Robotics.Piscataway, NJ: IEEE Press, 2018: 66-70.
    [16] LASCHI C, CIANCHETTI M, MAZZOLAI B, et al.Soft robot arm inspired by the octopus[J].Advanced Robotics, 2012, 26(7):709-727. doi: 10.1163/156855312X626343
    [17] 郭钟华, 李小宁, 林浩鹏.基于主动包络和负压塑形的软体适形夹持器[J].机械工程学报, 2019, 55(12):215-221. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201912024

    GUO Z H, LI X N, LIN H P.Soft conformal gripper based on active envelope and negative pressure shaping[J].Journal of Mechanical Engineering, 2019, 55(12):215-221(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201912024
    [18] 魏树军, 王天宇, 谷国迎.基于纤维增强型驱动器的气动软体抓手设计[J].机械工程学报, 2017, 53(13):29-38. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201713004

    WEI S J, WANG T Y, GU G Y.Design of pneumatic soft grips based on fiber reinforced drivers[J].Chinese Journal of Mechanical Engineering, 2017, 53(13):29-38(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jxgcxb201713004
    [19] GALLOWAY K C, KAITLYN P B, PHILLIPS B, et al.Soft robotic grippers for biological sampling on deep reefs[J].Soft Robotics, 2016, 3(1):2169-5172. http://cn.bing.com/academic/profile?id=598e5f11ed5f423b37e5fa6797cde771&encoded=0&v=paper_preview&mkt=zh-cn
    [20] HAO Y F, GONG Z, XIE Z, et al.Universal soft pneumatic robotic gripper with variable effective length[C]//Proceedings of the 35th Chinese Control Conference.Piscataway, NJ: IEEE Press, 2016: 6109-6114.
    [21] 王宁扬, 孙昊, 姜皓, 等.一种基于蜂巢气动网络的软体夹持器抓取策略研究[J].机器人, 2016, 38(3):371-384. http://d.old.wanfangdata.com.cn/Periodical/jqr201603014

    WANG N Y, SUN H, JIANG H, et al.On grasp strategy of honeycomb pneuNets soft gripper[J].Robot, 2016, 38(3):371-384(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jqr201603014
    [22] YU D, MARTIN S, XU W L.A soft ring-shaped actuator for radial contracting deformation:Design and modeling[J].Soft Robotics, 2019, 6(4):444-454. doi: 10.1089/soro.2018.0064
    [23] LI H, YAO J T, ZHOU P C, et al.High-load soft grippers based on bionic winding effects[J].Soft Robotics, 2018, 6(2):276-288. https://www.ncbi.nlm.nih.gov/pubmed/30650016
    [24] WU P C, LIN N, LEI T, et al.A new grasping mode based on a sucked-type underactuated hand[J].Chinese Journal of Mechanical Engineering, 2018, 31(6):25-33. http://d.old.wanfangdata.com.cn/Periodical/jxgcxb-e201806002
    [25] MANTI M, HASSAN T, PASSETTI G, et al.A bioinspired soft robotic gripper for adaptable and effective grasping[J].Soft Robotics, 2015, 2(3):107-116. http://cn.bing.com/academic/profile?id=6b2b04bf0b9dd81b3b6b8c9d5db2d315&encoded=0&v=paper_preview&mkt=zh-cn
    [26] BROWN E, RODENBER N, AMEND J, et al.Universal robotic gripper based on the jamming of granular material[J].Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(44):18809-18814. doi: 10.1073/pnas.1003250107
    [27] ELSAYED A, VINCENSI A, LEKAKOU C, et al.Finite element analysis mad design optimization of a pneumatically actuating silicone module for robotic surgery applications[J].Soft Robotics, 2014, 1(4):255-262. doi: 10.1089/soro.2014.0016
    [28] 董虎, 林苗, 顾苏程, 等.多向气动驱动器软体仿生舌弯曲状态的研究[J].北京航空航天大学学报, 2019, 45(9):1882-1893. doi: 10.13700/j.bh.1001-5965.2018.0788

    DONG H, LIN M, GU S C, et al.The research on the motion characteristics of soft bionic tongue based on multi-directional pneumatic actuator[J].Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(9):1882-1893(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0788
    [29] WANG Z, POLYGERINOS P, JOHANNES T B, et al.Interaction forces of soft fiber reinforced bending actuators[J].IEEE/ASME Transactions on Mechatronics, 2017, 22(2):717-727. doi: 10.1109/TMECH.2016.2638468
    [30] 黄建龙, 解广娟, 刘正伟.基于Mooney-Rivlin模型和Yeoh模型的超弹性橡胶材料有限元分析[J].橡胶工业, 2008, 55(8):467-471. doi: 10.3969/j.issn.1000-890X.2008.08.004

    HUANG J L, XIE G J, LIU Z W.The finite element analysis of super-elastic rubber material based on Mooney-Rivlin model and Yeoh model[J].China Rubber Industry, 2008, 55(8):467-471(in Chinese). doi: 10.3969/j.issn.1000-890X.2008.08.004
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  6
  • PDF下载量:  316
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-22
  • 录用日期:  2019-07-19
  • 刊出日期:  2020-02-20

目录

    /

    返回文章
    返回
    常见问答