留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于BP-GIS的京津冀碳钢土壤腐蚀速率地图研究

李敬洋 王震 陈怡 祁俊峰 杨斌

李敬洋, 王震, 陈怡, 等 . 基于BP-GIS的京津冀碳钢土壤腐蚀速率地图研究[J]. 北京航空航天大学学报, 2020, 46(6): 1151-1158. doi: 10.13700/j.bh.1001-5965.2019.0403
引用本文: 李敬洋, 王震, 陈怡, 等 . 基于BP-GIS的京津冀碳钢土壤腐蚀速率地图研究[J]. 北京航空航天大学学报, 2020, 46(6): 1151-1158. doi: 10.13700/j.bh.1001-5965.2019.0403
LI Jingyang, WANG Zhen, CHEN Yi, et al. Beijing-Tianjin-Hebei carbon steel soil corrosion rate map based on BP-GIS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1151-1158. doi: 10.13700/j.bh.1001-5965.2019.0403(in Chinese)
Citation: LI Jingyang, WANG Zhen, CHEN Yi, et al. Beijing-Tianjin-Hebei carbon steel soil corrosion rate map based on BP-GIS[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(6): 1151-1158. doi: 10.13700/j.bh.1001-5965.2019.0403(in Chinese)

基于BP-GIS的京津冀碳钢土壤腐蚀速率地图研究

doi: 10.13700/j.bh.1001-5965.2019.0403
详细信息
    作者简介:

    李敬洋   男,硕士,工程师。主要研究方向:材料服役安全、增材制造、空间制造等

    通讯作者:

    李敬洋.E-mail: jing_yang_li@163.com

  • 中图分类号: TB324

Beijing-Tianjin-Hebei carbon steel soil corrosion rate map based on BP-GIS

More Information
  • 摘要:

    针对京津冀地区碳钢土壤腐蚀问题,应用误差反向传播(BP)神经网络,以主影响因素为输入参数,分别构建了针对京津冀地区碳钢土壤腐蚀速率模型。根据各主要土壤腐蚀影响因素数值,对碳钢土壤腐蚀速率实现了预测。并基于地理信息系统(GIS)绘制了中国年均碳钢土壤腐蚀速率地图。研究表明:京津冀地区单年均碳钢土壤腐蚀速率西北高东南低,多年均碳钢土壤腐蚀速率基本均匀分布;pH、含盐总量、土壤温度、全氮量和有机质对碳钢土壤腐蚀较为显著;1、3、5和8年均碳钢土壤腐蚀速率分布最大为6.159、2.322、2.614和3.467 g/(dm2·a)。

     

  • 图 1  碳钢土壤腐蚀主要影响因素空间分布

    Figure 1.  Spatial distribution of main impact factors of carbon steel soil corrosion

    图 2  碳钢土壤腐蚀建模及预测数据点位空间分布

    Figure 2.  Carbon steel soil corrosion modeling and spatial distribution of prediction data point location

    图 3  BP神经网络结构

    Figure 3.  BP neural network structure

    图 4  碳钢土壤腐蚀实测模拟散点图

    Figure 4.  Scatter diagram for measured and simulated carbon steel soil corrosion

    图 5  碳钢土壤腐蚀空间分布

    Figure 5.  Spatial distribution of carbon steel soil corrosion

    图 6  年均碳钢土壤腐蚀速率对比箱型图

    Figure 6.  Contrast box diagram of average annual corrosion rate of carbon steel soil

    图 7  京津冀年均碳钢土壤腐蚀速率对比

    Figure 7.  Comparison of average annual corrosion rate of carbon steel soil in Beijing, Tianjin and Hebei

    图 8  各主要城市年均碳钢土壤腐蚀速率对比

    a—北京市; b—保定市; c—沧州市; d—承德市; e—邯郸市; f—衡水市; g—廊坊市; h—秦皇岛市; i—石家庄市; j—唐山市; k—邢台市; l—张家口市; m—天津市。

    Figure 8.  Comparison of average annual corrosion rate of carbon steel soil in major cities

    表  1  BP神经网络参数设置

    Table  1.   Parameter setting of BP neural network

    参数 数值
    输入节点数 9
    隐含节点数 6
    输出节点数 1
    样品组数 64
    训练样本组数 48
    验证样本组数 16
    权重调节系数 0.1
    阈值调节系数 0.1
    误差控制率 0.001
    最大学习次数 8000
    下载: 导出CSV

    表  2  碳钢土壤腐蚀影响因素与年均碳钢土壤腐蚀速率相关性

    Table  2.   Correlation between factors affecting carbon steel soil corrosion and average annual corrosion rate of carbon steel soil

    因素 埋藏时间/年
    1 3 5 8
    有机质 0.603 0.528 0.236 0.217
    含水量 0.101 0.103 0.101 0.031
    全氮量 0.637 0.466 0.129 0.158
    土壤温度 0.533 0.198 0.203 0.135
    容重 -0.009 -0.013 -0.017 -0.01
    总孔隙率 0.131 0.011 0.216 0.267
    含盐总量 0.714 0.440 0.312 0.130
    pH -0.369 -0.117 -0.414 -0.501
    下载: 导出CSV
  • [1] 侯保荣, 路东柱.我国腐蚀成本及其防控策略[J].中国科学院院刊, 2018, 33(6):601-609. http://d.old.wanfangdata.com.cn/Periodical/zgkxyyk201806008

    HOU B R, LU D Z. Corrosion cost and preventive strategies in China[J].Strategy & Policy Decision Research, 2018, 33(6):601-609(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgkxyyk201806008
    [2] 潘雪新, 姜海昌, 付鸿, 等.区域性气候条件下低合金高强耐候钢的初期腐蚀行为研究[J].腐蚀科学与防护技术, 2017, 29(4):356-362. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fskxyfhjs201704004

    PAN X X, JIANG H C, FU H, et al.Investigation on initial-stage corrosion behavior of low-alloy high-strength weathering resistant steel in regional climates[J].Corrosion Science and Protection Technology, 2017, 29(4):356-362(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fskxyfhjs201704004
    [3] SORIANO C, ALFANTAZI A.Corrosion behavior of galvanized steel due to typical soil organics[J].Construction & Building Materials, 2016, 102(2):904-912. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7feb2d3a318069b3f9e67c0f57335e75
    [4] 曲良山, 李晓刚, 杜翠薇, 等.运用BP人工神经网络方法构建碳钢区域土壤腐蚀预测模型[J].北京科技大学学报, 2009, 31(12):1569-1575. doi: 10.3321/j.issn:1001-053X.2009.12.015

    QU L S, LI X G, DU C W, et al.Corrosion rate prediction model of carbon steel in regional soil based on BP artificial neural network.[J] Journal of University of Science and Technology Beijing, 2009, 31(12):1569-1575(in Chinese). doi: 10.3321/j.issn:1001-053X.2009.12.015
    [5] 李丽, 李晓刚, 邢士波, 等.BP人工神经网络对国内典型地区碳钢土壤腐蚀的预测研究[J].腐蚀科学与防护技术, 2013, 25(5):372-376. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fskxyfhjs201305004

    LI L, LI X G, XING S B, et al.Research on soil corrosion rate prediction of carbon steel in typical Chinese cities based on BP artificial neural network[J].Corrosion Science and Protection Technology, 2013, 25(5):372-376(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fskxyfhjs201305004
    [6] 郭阳阳.基于神经网络的海南变电站土壤对Q235钢的腐蚀预测研究[D].北京: 华北电力大学, 2016. http://cdmd.cnki.com.cn/Article/CDMD-10079-1016276173.htm

    GUO Y Y.Study on corrosion prediction of Q235 steel from soil in Hainan substation based on artificial neural network[D].Beijing: North China Electric Power University, 2016(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10079-1016276173.htm
    [7] BRAGA G E, JUNQUEIRA R M R.Methodology for planning tower leg foundations corrosion maintenance of overhead transmission lines based on GIS[J].IEEE Transactions on Power Delivery, 2016, 31(4):1601-1608. doi: 10.1109/TPWRD.2016.2524003
    [8] SHABARCHIN O, TESFAMARIAM S.Internal corrosion hazard assessment of oil & gas pipelines using Bayesian belief network model[J].Journal of Loss Prevention in the Process Industries, 2016, 40:479-495. doi: 10.1016/j.jlp.2016.02.001
    [9] KARACA F.Mapping the corrosion impact of air pollution on the historical peninsula of Istanbul[J].Journal of Cultural Heritage, 2013, 14(2):129-137. doi: 10.1016/j.culher.2012.04.011
    [10] NEOCLEOUS K, CHRISTOFE A, AGAPIOU A, et al.Digital mapping of corrosion risk in coastal urban areas using remote sensing and structural condition assessment:Case study in cyprus[J].Open Geosciences, 2016, 8(1):662-674. https://ui.adsabs.harvard.edu/abs/2016OGeo....8...63N/abstract
    [11] 鲁娟娟, 陈红.BP神经网络的研究进展[J].控制工程, 2006, 13(5):449-451. doi: 10.3969/j.issn.1671-7848.2006.05.016

    LU J J, CHEN H.Researching development on BP neural networks[J].Control Engineering of China, 2006, 13(5):449-451(in Chinese). doi: 10.3969/j.issn.1671-7848.2006.05.016
    [12] 许宏良, 殷苏民.基于改进BP神经网络优化的管道腐蚀速率预测模型研究[J].表面技术, 2018, 47(2):177-181. http://d.old.wanfangdata.com.cn/Periodical/bmjs201802028

    XU H L, YIN S M.Prediction model of pipeline corrosion rate based on improved BP neural network[J].Surface Technology, 2018, 47(2):177-181(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bmjs201802028
    [13] 李可, 王全鑫, 宋世民, 等.基于改进人工神经网络的航天器电信号分类方法[J].北京航空航天大学学报, 2016, 42(3):596-601. doi: 10.13700/j.bh.1001-5965.2015.0186

    LI K, WANG Q X, SONG S M, et al.Spacecraft electrical signal classification method based on improved artificial neural network[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(3):596-601(in Chinese). doi: 10.13700/j.bh.1001-5965.2015.0186
    [14] 孙文彬, 刘希亮, 王洪斌, 等.基于MIV的抛掷爆破影响因子权重分析[J].中国矿业大学学报, 2012, 41(6):993-998. http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201206022

    SUN W B, LIU X L, WANG H B, et al.Weight analysis of cast blasting effective factors based on MIV method[J].Journal of China University of Mining & Technology, 2012, 41(6):993-998(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgkydxxb201206022
    [15] 杨斌, 李敬洋, 文磊.基于MIV的碳钢大气腐蚀速率影响因子权重分析[J].北京航空航天大学学报, 2018, 44(8):1620-1628. doi: 10.13700/j.bh.1001-5965.2017.0638

    YANG B, LI J Y, WEN L.Impact factor weight analysis of atmospheric corrosion rate of carbon steel based on MIV[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(8):1620-1628(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0638
    [16] 聂铭, 周冀衡, 杨荣生, 等.基于MIV-SVM的烤烟评吸质量预测模型[J].中国烟草学报, 2014, 20(6):56-62. http://d.old.wanfangdata.com.cn/Periodical/zgycxb201406010

    NIE M, ZHOU J H, YANG R S, at al.MIV-SVM-based prediction model for smoking quality of flue-cured tobacco[J].Acta Tabacaria Sinica, 2014, 20(6):56-62(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgycxb201406010
    [17] REDDY R L, APOORVA B, SNIGDHA S, et al.GIS applications in land use and land development of a city[J].International Journal of Emerging Technology and Advanced Engineering, 2013, 3(5):303-308. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_5875a5fa26943614bc4c8c6f033c2f87
    [18] ACHARYA S S, PANIGRAHI M K.Evaluation of factors controlling the distribution of organic matter and phosphorus in the Eastern Arabian shelf:A geostatistical reappraisal[J].Continental Shelf Research, 2016, 126:79-88. doi: 10.1016/j.csr.2016.08.001
    [19] GUPTA A, KAMBLE T, MACHIWAL D.Comparison of ordinary and Bayesian Kriging techniques in depicting rainfall variability in arid and semi-arid regions of north-west India[J].Environmental Earth Sciences, 2017, 76(15):512. doi: 10.1007/s12665-017-6814-3
    [20] SAĞIR Ç, KURTULUŞ B.Hydraulic head and groundwater 111cd content interpolations using empirical Bayesian Kriging(EBK)and geo-adaptive neuro-fuzzy inference system (geo-ANFIS)[J].Water SA, 2017, 43(3):509-519. http://www.scielo.org.za/scielo.php?script=sci_abstract&pid=S1816-79502017000300016&lng=pt&nrm=iso&tlng=en
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  273
  • HTML全文浏览量:  0
  • PDF下载量:  93
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-07-19
  • 录用日期:  2019-10-27
  • 刊出日期:  2020-06-20

目录

    /

    返回文章
    返回
    常见问答