留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

菱形翼布局太阳能无人机螺旋桨滑流影响研究

赵炜 黄江流 周洲 张顺家 毕鹏

赵炜, 黄江流, 周洲, 等 . 菱形翼布局太阳能无人机螺旋桨滑流影响研究[J]. 北京航空航天大学学报, 2020, 46(7): 1296-1306. doi: 10.13700/j.bh.1001-5965.2019.0438
引用本文: 赵炜, 黄江流, 周洲, 等 . 菱形翼布局太阳能无人机螺旋桨滑流影响研究[J]. 北京航空航天大学学报, 2020, 46(7): 1296-1306. doi: 10.13700/j.bh.1001-5965.2019.0438
ZHAO Wei, HUANG Jiangliu, ZHOU Zhou, et al. Effects of propeller slipstream on diamond joined-wing configuration solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1296-1306. doi: 10.13700/j.bh.1001-5965.2019.0438(in Chinese)
Citation: ZHAO Wei, HUANG Jiangliu, ZHOU Zhou, et al. Effects of propeller slipstream on diamond joined-wing configuration solar-powered UAV[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1296-1306. doi: 10.13700/j.bh.1001-5965.2019.0438(in Chinese)

菱形翼布局太阳能无人机螺旋桨滑流影响研究

doi: 10.13700/j.bh.1001-5965.2019.0438
详细信息
    作者简介:

    赵炜 男, 硕士研究生, 工程师。主要研究方向:飞行器总体设计与气动特性研究

    通讯作者:

    赵炜. E-mail:zhaowei_0203@163.com

  • 中图分类号: V211

Effects of propeller slipstream on diamond joined-wing configuration solar-powered UAV

More Information
  • 摘要:

    为了探究螺旋桨滑流对低雷诺数菱形翼布局太阳能无人机气动特性的影响,采用动量源方法(MSM)与k-kL-ω转捩模型求解雷诺平均Navier-Stokes(RANS)方程对不同转速状态下菱形翼布局太阳能无人机的气动特性进行了准确模拟。并通过对比机翼表面流场结构与压力分布,分析了不同迎角下螺旋桨转速变化对菱形翼布局前后翼气动干扰的机理。研究表明:随着螺旋桨转速增大,小迎角下增升减阻效果明显,最大升阻比在3 000 r/min时提升了18.4%。在小迎角时,前翼气流受到抽吸作用,升力增加,后翼受螺旋桨旋转气流影响,前缘出现大范围吸力区,压差阻力减小。在大迎角时,前翼影响不变,后翼前缘下表面吸力区范围及强度均减弱,前缘负升力区消失,增升效果改善,压差阻力增加。由于在不同迎角时,升力增量的主要贡献部件不同,导致无人机纵向静稳定裕度随着转速的提升而增大。菱形翼布局太阳能无人机通过合理设置螺旋桨位置与转速,可有效利用螺旋桨滑流提升气动性能。

     

  • 图 1  带动力构型菱形翼布局太阳能无人机

    Figure 1.  Diamond joined-wing configuration solar-powered UAV with power

    图 2  螺旋桨实体模型局部网格示意图

    Figure 2.  Schematic diagram of local grid of propeller solid model

    图 3  螺旋桨拉力对比

    Figure 3.  Comparison of propeller thrusts

    图 4  升阻力系数CFD与试验结果对比

    Figure 4.  Comparison of lift and drag coefficients between CFD and test results

    图 5  气动力系数随转速变化

    Figure 5.  Variation of aerodynamic force coefficients with rotational speed

    图 6  展向升力系数分布

    Figure 6.  Spanwise lift coefficient distribution

    图 7  0°迎角不同转速机翼表面流场结构

    Figure 7.  Flow field structures of wing surface at different rotational speeds and 0° angle of attack

    图 8  0°迎角不同转速后翼局部流场结构

    Figure 8.  Flow field structures of part of Aft-wing surface at different rotational speeds and 0° angle of attack

    图 9  截面位置示意图

    Figure 9.  Schematic diagram of section position

    图 10  0°迎角截面不同转速压力系数分布对比

    Figure 10.  Comparison of pressure coefficient distribution at different rotational speeds at 0°angle of attack sections

    图 11  10°迎角不同转速后翼局部流场结构

    Figure 11.  Flow field structures of part of Aft-wing surface at different rotational speeds and 10°angle of attack

    图 12  10°迎角截面不同转速压力系数分布对比

    Figure 12.  Comparison of pressure coefficient distribution at different rotational speeds at 10° angle of attack sections

    表  1  0°迎角时阻力系数随转速变化

    Table  1.   Variation of drag coefficient with rotational speed at 0° angle of attack

    转速/(r·min-1) 前翼压差阻力系数 前翼摩擦阻力系数 后翼压差阻力系数 后翼摩擦阻力系数 总阻力系数
    0 0.003 839 0.001 753 0.004 900 0.001 821 0.021 912
    1 320 0.003 813 0.001 762 0.004 844 0.001 888 0.021 997
    2 500 0.003 999 0.001 791 0.003 506 0.002 297 0.021 097
    3 000 0.003 998 0.001 796 0.002 571 0.002 575 0.020 390
    下载: 导出CSV

    表  2  0°迎角时升力系数随转速变化

    Table  2.   Variation of lift coefficient with rotational speed at 0° angle of attack

    转速/
    (r·min-1)
    前翼升力
    系数
    后翼升力
    系数
    总升力
    系数
    0 0.230 38 0.089 69 0.619 4
    1 320 0.234 64 0.093 24 0.627 0
    2 500 0.249 49 0.099 22 0.645 7
    3 000 0.252 16 0.102 24 0.656 0
    下载: 导出CSV

    表  3  10°迎角时阻力系数随转速变化

    Table  3.   Variation of drag coefficient with rotational speed at 10° angle of attack

    转速/(r·min-1) 前翼压差阻力系数 前翼摩擦阻力系数 后翼压差阻力系数 后翼摩擦阻力系数 总阻力系数
    0 0.063 059 0.000 427 0.031 366 0.002 735 0.166 405
    1 320 0.063 946 0.000 426 0.033 562 0.003 096 0.170 390
    2 500 0.066 266 0.000 414 0.038 269 0.004 258 0.179 118
    3 000 0.066 766 0.000 409 0.040 468 0.004 909 0.183 049
    下载: 导出CSV

    表  4  10°迎角时升力系数随转速变化

    Table  4.   Variation of lift coefficient with rotational speed at 10° angle of attack

    转速/
    (r·min-1)
    前翼升力
    系数
    后翼升力
    系数
    总升力
    系数
    0 0.435 98 0.313 04 1.332 33
    1 320 0.445 08 0.327 57 1.357 14
    2 500 0.464 64 0.358 03 1.407 26
    3 000 0.474 71 0.373 74 1.428 39
    下载: 导出CSV
  • [1] 昌敏, 周洲, 郑志成.太阳能飞机原理及总体参数敏度分析[J].西北工业大学学报, 2010, 28(5):792-796. doi: 10.3969/j.issn.1000-2758.2010.05.029

    CHANG M, ZHOU Z, ZHENG Z C.Flight principles of solar-powered airplane and sensitivity of its conceptual parameters[J]. Journal of Northwestern Polytechnical University, 2010, 28(5):792-796(in Chinese). doi: 10.3969/j.issn.1000-2758.2010.05.029
    [2] 邓海强, 余雄庆.太阳能飞机的现状和发展趋势[J].航空科学技术, 2006(1):28-30. doi: 10.3969/j.issn.1007-5453.2006.01.009

    DENG H Q, YU X Q.Solar aircraft:Status and directions[J]. Aeronautical Science and Technology, 2006(1):28-30(in Chinese). doi: 10.3969/j.issn.1007-5453.2006.01.009
    [3] 刘强, 刘强, 白鹏, 等.不同雷诺数下翼型气动特性及层流分离现象演化[J].航空学报, 2017, 38(4):22-34. http://d.old.wanfangdata.com.cn/Periodical/hkxb201704003

    LIU Q, LIU Q, BAI P, et al.Aerodynamic characteristics of airfoil and evolution of laminar separation at different Reynolds numbers[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(4):22-34(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201704003
    [4] 甘文彪, 周洲, 许晓平.仿生全翼式太阳能无人机气动数值模拟[J].航空学报, 2015, 36(10):3284-3294. http://d.old.wanfangdata.com.cn/Periodical/hkxb201510009

    GAN W B, ZHOU Z, XU X P.Aerodynamic numerical simulation of bionic full-wing typical solar-powered unmanned aerial vehicle[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(10):3284-3294(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201510009
    [5] NOLL T E, BROWN J M, PEREZ-DAVIS M E, et al.Investigation of the Helios prototype aircraft mishap.Volume I.Mishap report[R].Washington, D.C.: NASA, 2004.
    [6] 王伟, 周洲, 祝小平, 等.考虑几何非线性效应的大柔性太阳能无人机静气动弹性分析[J].西北工业大学学报, 2014, 32(4):499-504. doi: 10.3969/j.issn.1000-2758.2014.04.004

    WANG W, ZHOU Z, ZHU X P, et al.Static aeroelastic characteristics analysis of a very flexible solar powered UAV with geometrical effect considered[J].Journal of Northwestern Polytechnical University, 2014, 32(4):499-504(in Chinese). doi: 10.3969/j.issn.1000-2758.2014.04.004
    [7] DILLSAVER M J, CESNIK C E S, KOLMANOVSKY I V.Gust response sensitivity characteristics of very flexible aircraft[C]//AIAA Atmospheric Flight Mechanics Conference.Reston: AIAA, 2012: 1-20.
    [8] CHARLE T, GREGORY S.Comparsion of computation and experimental studies for a joined wing aircraft: AIAA-2002-0702[R].Reston: AIAA, 2002.
    [9] LEDOUX S, VASSBERG J, FATTA G, et al.Aerodynamic cruise design of a joined wing sensorcraft: AIAA-2008-7190[R].Reston: AIAA, 2008.
    [10] 李光里, 李国文, 黎军, 等.连接翼布局气动特性研究[J].空气动力学学报, 2006, 24(4):513-519. doi: 10.3969/j.issn.0258-1825.2006.04.023

    LI G L, LI G W, LI J, et al.The aerodynamic investigation of the joined-wing configuration[J].Acta Aerodynamica Sinica, 2006, 24(4):513-519(in Chinese). doi: 10.3969/j.issn.0258-1825.2006.04.023
    [11] 吴光辉, 王妙香, 张健.盒式布局飞机的纵向气动参数优化研究[J].飞行力学, 2007, 25(4):5-7. doi: 10.3969/j.issn.1002-0853.2007.04.002

    WU G H, WANG M X, ZHANG J.Research on longitudinal aerodynamic parameter optimize of a joined-wing configuration aircraft[J].Flight Dynamics, 2007, 25(4):5-7(in Chinese). doi: 10.3969/j.issn.1002-0853.2007.04.002
    [12] CATALANO F M.On the effects of an installed propeller slipstream on wing aerodynamic characteristics[J].Acta Polytechnica, 2004, 44(3):8-14. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_96bd7bbfc40624c1b60540bb550ea624
    [13] 王科雷, 祝小平, 周洲, 等.低雷诺数分布式螺旋桨滑流气动影响[J].航空学报, 2016, 37(9):2669-2678. http://d.old.wanfangdata.com.cn/Periodical/hkxb201609005

    WANG K L, ZHU X P, ZHOU Z, et al. A study of distributed electric propulsion slipstream aerodynamic effects at low Reynolds number[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(9):2669-2678(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201609005
    [14] 王红波, 祝小平, 周洲, 等.基于非定常面元/黏性涡粒子法的低雷诺数滑流气动干扰[J].航空学报, 2017, 38(4):120412. http://www.cqvip.com/QK/91925X/201704/672038435.html

    WANG H B, ZHU X P, ZHOU Z, et al.Aerodynamic interactions at low Reynolds number slipstream with unsteady panel/viscous vortex particle method[J].Acta Aeronautica et Astronautica Sinica, 2017, 38(4):120412(in Chinese). http://www.cqvip.com/QK/91925X/201704/672038435.html
    [15] RAJAGOPALAN R G, LIM C K.Laminar flow analysis of a rotor in hover[J].Journal of the American Helicopter Society, 1991, 36(1):12-23. doi: 10.4050/JAHS.36.1.12
    [16] ZORI L A J, RAJAGOPALAN R G. Navier-Stokes calculations of rotor-airframe interaction in forward flight[J].Journal of the American Helicopter Society, 1995, 40(2):57-67. doi: 10.4050/JAHS.40.57
    [17] O'BRIEN M, SMITH M J.Analysis of rotor-fuselage interactions using various rotor models: AIAA-2005-468[R].Reston: AIAA, 2005.
    [18] 宋长红, 林永峰, 陈文轩, 等.基于动量源方法的涵道尾桨CFD分析[J].直升机技术, 2009(1):6-11. doi: 10.3969/j.issn.1673-1220.2009.01.002

    SONG C H, LIN Y F, CHEN W X, et al.CFD analysis for the ducted tail rotor based on momentum-source method[J].Helicopter Technique, 2009(1):6-11(in Chinese). doi: 10.3969/j.issn.1673-1220.2009.01.002
    [19] WALTERS D K, COKLJAT D.A three-equation eddy-viscosity model for Reynolds-averaged Navier-Stokes simulations of transitional flow[J].Journal of Fluids Engineering, 2008, 130(12):320-327. https://www.researchgate.net/publication/228634792_A_Three-Equation_Eddy-Viscosity_Model_for_Reynolds-Averaged_Navier-Stokes_Simulations_of_Transitional_Flow
    [20] LYON C A, BROEREN A P, GIGUERE P, et al.Summary of low-speed airfoil data-Vol.3[M].Virginia Beach:Soartech Publications, 1997:279-286.
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  380
  • HTML全文浏览量:  5
  • PDF下载量:  146
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-12
  • 录用日期:  2019-09-20
  • 刊出日期:  2020-07-20

目录

    /

    返回文章
    返回
    常见问答