留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

火箭空中爆炸冲击波峰值超压预测方法

王岩 王华 崔村燕 段永胜 赵蓓蕾

王岩, 王华, 崔村燕, 等 . 火箭空中爆炸冲击波峰值超压预测方法[J]. 北京航空航天大学学报, 2020, 46(7): 1371-1378. doi: 10.13700/j.bh.1001-5965.2019.0481
引用本文: 王岩, 王华, 崔村燕, 等 . 火箭空中爆炸冲击波峰值超压预测方法[J]. 北京航空航天大学学报, 2020, 46(7): 1371-1378. doi: 10.13700/j.bh.1001-5965.2019.0481
WANG Yan, WANG Hua, CUI Cunyan, et al. Prediction method of shock wave peak overpressure generated by air explosion of rocket[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1371-1378. doi: 10.13700/j.bh.1001-5965.2019.0481(in Chinese)
Citation: WANG Yan, WANG Hua, CUI Cunyan, et al. Prediction method of shock wave peak overpressure generated by air explosion of rocket[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(7): 1371-1378. doi: 10.13700/j.bh.1001-5965.2019.0481(in Chinese)

火箭空中爆炸冲击波峰值超压预测方法

doi: 10.13700/j.bh.1001-5965.2019.0481
详细信息
    作者简介:

    王岩 男, 博士研究生。主要研究方向:飞行器测试

    王华 男, 博士, 教授, 博士生导师。主要研究方向:飞行器测试

    通讯作者:

    王华, E-mail: wanghuaprofessor@163.com

  • 中图分类号: O383+.1

Prediction method of shock wave peak overpressure generated by air explosion of rocket

More Information
  • 摘要:

    研究火箭空中爆炸冲击波参数预测方法对于乘员舱的安全评估具有重要意义。为了探究火箭空中爆炸时飞行高度对峰值超压的影响,获取冲击波参数快速预测方法,利用ANSYS/LS-DYNA有限元软件对火箭飞行至0~20 km高度爆炸进行了有限元仿真分析。结果表明,作用于乘员舱的冲击波峰值超压随飞行高度的增加而快速减小。火箭空中爆炸冲击波压强衰减系数与飞行高度之间的关系服从二次函数衰减。在此基础上,提出了考虑高度效应的火箭空中爆炸冲击波峰值超压预测公式,可为乘员舱的快速危害性评估以及防护研究提供一定参考。

     

  • 图 1  火箭空中爆炸有限元模型

    Figure 1.  Finite element model of rocket explosion in air

    图 2  不同网格尺寸模型的冲击波峰值超压对比曲线

    Figure 2.  Comparison of shock wave peak overpressure among models with different mesh sizes

    图 3  乘员舱观测点分布

    Figure 3.  Observation points distribution of crew module

    图 4  仿真结果与经验公式平均值对比曲线

    Figure 4.  Comparison of simulation results with average of several empirical formulas

    图 5  火箭空中爆炸解体过程等效应变云图

    Figure 5.  Effective strain contour of rocket disintegration process during rocket explosion in air

    图 6  火箭空中爆炸时的冲击波超压云图演化过程

    Figure 6.  Evolution process of pressure contour of shock wave during rocket explosion in air

    图 7  火箭空中爆炸冲击波峰值超压随飞行高度变化关系

    Figure 7.  Relation between flight altitude and peak overpressure of shock wave generated by rocket explosion in air

    图 8  火箭空中爆炸时压力衰减因子随飞行高度变化拟合曲线

    Figure 8.  Fitting curve of change of pressure attenuation factor with flight altitude for rocket explosion in air

    表  1  不同飞行高度下的推进剂质量及当量系数

    Table  1.   Propellant mass and equivalent coefficient at different flight altitudes

    H/km M1/kg M2/kg 4 Mzt/kg Y
    0 157660 26000 576000 0.1110
    0.5 150640 26000 508480 0.1149
    1 148150 26000 484580 0.1161
    3 142370 26000 429010 0.1197
    6 137210 26000 379430 0.1235
    10 132360 26000 332750 0.1279
    15 127550 26000 286550 0.1330
    20 123590 26000 248430 0.1383
    下载: 导出CSV

    表  2  不同飞行高度数值仿真TNT初始参数

    Table  2.   Initial parameters of TNT at different flight altitudes in numerical simulations

    H/km mT/kg r0/m h0/m z0/m
    0 84322 2.0196 4.0392 20.6894
    0.5 78720 1.9738 3.9477 21.0062
    1 76479 1.9549 3.9099 21.1376
    3 71506 1.9116 3.8232 21.4627
    6 67016 1.8707 3.7415 21.7998
    10 62813 1.8308 3.6615 22.1569
    15 58533 1.7882 3.5764 22.5707
    20 55046 1.7520 3.5039 22.9639
    下载: 导出CSV

    表  3  不同飞行高度下的大气参数[25]

    Table  3.   Atmospheric parameters at different flight altitudes[25]

    H/km ρ/(g·cm-3) E0/10-6
    0 1.29 2.5
    0.5 1.167 2.3865
    1 1.111 2.2469
    3 0.9093 1.753
    6 0.6601 1.1805
    10 0.4135 0.6625
    15 0.1948 0.3028
    20 0.08891 0.1382
    下载: 导出CSV

    表  4  拟合公式中的参数及标准差

    Table  4.   Parameters and standard errors in fitting formula

    参数 数值 标准差
    a 0.0002 0.00046
    b -0.04932 0.00903
    c 0.97259 0.02876
    下载: 导出CSV
  • [1] VAUGHAN D.The challenger launch decision:Risky culture, technology, and deviance at NASA[M].Chicago:University of Chicago Press, 1996:1-11.
    [2] WILLOUGHBY A B, WILTON C, MANSFIELD J.Liquid propellant explosive hazards(Volume Ⅰ Technical documentary report): AD855086[R].Burlingame: URS Research Company, 1968: 126-139.
    [3] WILLOUGHBY A B, WILTON C, MANSFIELD J.Liquid propellant explosive hazards(Volume Ⅱ Test data): AD857342[R].Burlingame: URS Research Company, 1968: 158-170.
    [4] WILLOUGHBY A B, WILTON C, MANSFIELD J.Liquid propellant explosive hazards(Volume Ⅲ Test data): AD855087[R].Burlingame: URS Research Company, 1968: 209-221.
    [5] FARBER E A.Characteristics of liquid rocket propellant explosion phenomena(Part Ⅷ Prediction of explosive yield and other characteristics of liquid propellant rocket explosions): N69-18896[R].Gainesville: Florida Engineering and Industrial Experiment Station, 1968: 175-188.
    [6] BLACKWOOD J, SKINNER T, RICHARDSON E, et al.An empirical non-TNT approach to launch vehicle explosion modeling[C]//53rd AIAA Aerospace Sciences Meeting.Reston: AIAA, 2015: 5-9.
    [7] 刘科种, 徐更光, 辛春亮, 等.近水面水下爆炸对结构冲击的数值模拟[J].兵工学报, 2010, 31(1):64-68. doi: 10.3969/j.issn.1673-6524.2010.01.016

    LIU K Z, XU G G, XIN C L, et al.Numerical simulation for structure subjected to underwater explosion shock wave in shallow-water[J].Acta Armamentarii, 2010, 31(1):64-68(in Chinese). doi: 10.3969/j.issn.1673-6524.2010.01.016
    [8] OSIPOV V, MURATOV C, HAFIYCHUK H, et al.Explosion hazard from a propellant-tank breach in liquid hydrogen-oxygen rockets[J].Journal of Spacecraft and Rockets, 2013, 50(4):860-871. doi: 10.2514/1.A32277
    [9] HOSANGADI A, MADAVAN N.Simulation of propellant explosions resulting from crew launch vehicle tank failure: AIAA-2008-6912[R].Reston: AIAA, 2008.
    [10] 刘博, 王煊军, 宋海洲.液体推进剂爆炸冲击波的数值模拟[J].航天器环境工程, 2012, 29(2):129-133. doi: 10.3969/j.issn.1673-1379.2012.02.003

    LIU B, WANG X J, SONG H Z.Numerical simulation of explosion shock wave in air with liquid propellant[J].Spacecraft Environment Engineering, 2012, 29(2):129-133(in Chinese). doi: 10.3969/j.issn.1673-1379.2012.02.003
    [11] 孙克, 陈景鹏, 赵继广, 等.低温液体火箭塔台爆炸事故危害性分析[J].计算机仿真, 2013, 30(3):109-113. doi: 10.3969/j.issn.1006-9348.2013.03.027

    SUN K, CHEN J P, ZHAO J G, et al.Hazard analysis on explosion of cryogenic liquid rocket on launch pad[J].Computer Simulation, 2013, 30(3):109-113(in Chinese). doi: 10.3969/j.issn.1006-9348.2013.03.027
    [12] 陈景鹏, 韩斯宇, 孙克, 等.液体火箭共底破裂爆炸安全设防距离[J].火灾科学, 2012, 21(3):131-136. http://d.old.wanfangdata.com.cn/Periodical/hzkx201203004

    CHEN J P, HAN S Y, SUN K, et al.Fortification distance for prevention of liquid rocket explosion[J].Fire Safety Science, 2012, 21(3):131-136(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hzkx201203004
    [13] 李勇, 肖伟, 程远胜, 等.冲击波与破片对波纹杂交夹层板的联合毁伤数值研究[J].爆炸与冲击, 2018, 38(2):279-288. http://d.old.wanfangdata.com.cn/Periodical/bzycj201802006

    LI Y, XIAO W, CHENG Y S, et al.Numerical research on response of hybrid corrugated sandwich plates subjected to combined blast and fragment loadings[J].Explosion and Shock Waves, 2018, 38(2):279-288(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bzycj201802006
    [14] 耿振刚, 李秀地, 苗朝阳, 等.温压炸药爆炸冲击波在坑道内的传播规律研究[J].振动与冲击, 2017, 36(5):23-29. http://d.old.wanfangdata.com.cn/Periodical/zdycj201705005

    GENG C G, LI X D, MIAO C Y, et al.Propagation of blast wave of thermobaric explosive inside a tunnel[J].Journal of Vibration and Shock, 2017, 36(5):23-29(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdycj201705005
    [15] 谢雪腾.高原环境爆炸冲击波传播特性的数值模拟与实验研究[D].南京: 南京理工大学, 2017: 31-56.

    XIE X T.Numerical simulation and experimental research on propagation characteristics of blast shock wave at plateau environment[D].Nanjing: Nanjing University of Science and Technology, 2017: 31-56(in Chinese).
    [16] 庞春桥, 陶钢, 周佩杰, 等.高原环境下爆炸冲击波参数的有效预测方法[J].振动与冲击, 2018, 37(14):221-226. http://d.old.wanfangdata.com.cn/Periodical/zdycj201814031

    PANG C Q, TAO G, ZHOU P J, et al.Effective method for predicting the parameters of shock waves in plateau environment[J].Journal of Vibration and Shock, 2018, 37(14):221-226(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdycj201814031
    [17] 宋元宁, 于立友, 李彩霞.TNT当量法预测某石化设备爆炸后果评价[J].中国安全生产科学技术, 2005, 1(3):66-68. http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz200503017

    SONG Y N, YU L Y, LI C X.TNT equivalent method predicts the consequence that some petrochemical industry equipment explodes[J].Journal of Safety Science and Technology, 2005, 1(3):66-68(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zgzyaqwsgltxrz200503017
    [18] 陈新华, 聂万胜.液体推进剂爆炸危害性评估方法及应用[M].北京:国防工业出版社, 2005:99-104.

    CHEN X H, NIE W S.Method and application of liquid propellant explosion hazard assessment[M].Beijing:National Defence Industry Press, 2005:99-104(in Chinese).
    [19] WANG J X, YIN Y, LUO C W.Johnson-Holmquist-Ⅱ(JH-2) constitutive model for rock materials:Parameter determination and application in tunnel smooth blasting[J].Appllied Sciences, 2018, 8(9):1675. doi: 10.3390/app8091675
    [20] YANG Y B, XIE X Y, WANG R L.Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion[J].Journal of Rock Mechanics and Geotechnical Engineering, 2010, 2(4):373-384. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yslxyytgcxb-e201004011
    [21] 周杰, 陶钢, 张洪伟, 等.模拟不同爆炸冲击波的计算方法研究[J].兵工学报, 2014, 35(11):1846-1850. doi: 10.3969/j.issn.1000-1093.2014.11.016

    ZHOU J, TAO G, ZHANG H W, et al.Research on simulating method of different blast waves[J].Acta Armamentarii, 2014, 35(11):1846-1850(in Chinese). doi: 10.3969/j.issn.1000-1093.2014.11.016
    [22] HU Q Y, YU H T, YUAN Y.Numerical simulation of dynamic response of an existing subway station subjected to internal blast loading[J].Transactions of Tianjin University, 2008(S1):563-568. doi: 10.1007-s12209-008-0097-4/
    [23] 尚晓江, 苏建宇, 王化锋.ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社, 2008:257-274.

    SHANG X J, SU J Y, WANG H F, et al.ANSYS/LS-DYNA dynamic analysis method and engineering examples[M].Beijing:China Water Conservancy and Hydropower Press, 2008:257-274(in Chinese).
    [24] SESHADRI R, NAVEEN I, SHARAN S, et al.Finite element simulation of the orthogonal machining process with Al 2024 T351 aerospace alloy[J].Procedia Engineering, 2013, 64:1454-1463. doi: 10.1016/j.proeng.2013.09.227
    [25] 钱翼稷.空气动力学[M].北京:北京航空航天大学出版社, 2004:18-21.

    QIAN Y J.Aerodynamics[M].Beijing:Beihang University Press, 2004:18-21(in Chinese).
    [26] 聂源, 蒋建伟, 李梅.球形装药动态爆炸冲击波超压场计算模型[J].爆炸与冲击, 2017, 37(5):951-956. http://d.old.wanfangdata.com.cn/Periodical/bzycj201705023

    NIE Y, JIANG J W, LI M.Overpressure calculation model of sphere charge blasting with moving velocity[J].Explosion and Shock Waves, 2017, 37(5):951-956(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/bzycj201705023
    [27] BRODE H L.Blast wave from a spherical charge[J].The Physics of Fluids, 1959, 2(2):217-229. doi: 10.1063/1.1705911
    [28] HENRYCH J, MAJOR R.The dynamics of explosion and its use[M].New York:Elsevier Scientific Publishing Company, 1979:73-74.
    [29] NEHDI M L, ALI M A E M.Experimental and numerical study of engineered cementitious composite with strain recovery under impact loading[J].Applied Sciences, 2019, 9(5):994. doi: 10.3390/app9050994
    [30] ZHONG D W, GONG X C, HAN F, et al.Monitoring the dynamic response of a buried polyethylene pipe to a blast wave:An experimental study[J].Applied Sciences, 2019, 9(8):1663. doi: 10.3390/app9081663
    [31] BENSELAMA A M, MAME J P, MONNOYER F.Prediction of blast wave effects on a developed site[J].International Journal of Impact Engineering, 2010, 37(4):385-396. doi: 10.1016/j.ijimpeng.2009.08.003
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  444
  • HTML全文浏览量:  3
  • PDF下载量:  130
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 录用日期:  2020-01-03
  • 刊出日期:  2020-07-20

目录

    /

    返回文章
    返回
    常见问答