留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

锂离子电池SOC及容量的多尺度联合估计

杨世春 华旸 顾启蒙 闫啸宇 李琳

杨世春, 华旸, 顾启蒙, 等 . 锂离子电池SOC及容量的多尺度联合估计[J]. 北京航空航天大学学报, 2020, 46(8): 1444-1452. doi: 10.13700/j.bh.1001-5965.2019.0488
引用本文: 杨世春, 华旸, 顾启蒙, 等 . 锂离子电池SOC及容量的多尺度联合估计[J]. 北京航空航天大学学报, 2020, 46(8): 1444-1452. doi: 10.13700/j.bh.1001-5965.2019.0488
YANG Shichun, HUA Yang, GU Qimeng, et al. Multi-scale joint estimation of SOC and capacity of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1444-1452. doi: 10.13700/j.bh.1001-5965.2019.0488(in Chinese)
Citation: YANG Shichun, HUA Yang, GU Qimeng, et al. Multi-scale joint estimation of SOC and capacity of lithium-ion battery[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1444-1452. doi: 10.13700/j.bh.1001-5965.2019.0488(in Chinese)

锂离子电池SOC及容量的多尺度联合估计

doi: 10.13700/j.bh.1001-5965.2019.0488
基金项目: 

国家重点研发计划 2017YFB0102100

详细信息
    作者简介:

    杨世春  男, 博士, 教授, 博士生导师。主要研究方向:新能源汽车能源动力系统高效安全控制等

    华旸  男, 博士研究生。主要研究方向:新能源汽车控制系统

    顾启蒙  男, 硕士研究生。主要研究方向:新能源汽车电池管理及状态估计

    闫啸宇  男, 博士研究生。主要研究方向:新能源汽车工程

    李琳  女, 硕士研究生。主要研究方向:新能源汽车电池状态估计

    通讯作者:

    杨世春,E-mail: yangshichun@buaa.edu.cn

  • 中图分类号: U469.72+.2

Multi-scale joint estimation of SOC and capacity of lithium-ion battery

Funds: 

National Key R & D Program of China 2017YFB0102100

More Information
  • 摘要:

    锂离子电池的荷电状态(SOC)和电池容量估计是电池管理系统的核心。由于SOC和容量在估计过程中参数相互影响,提出一种适用于三元锂离子电池SOC及容量的多尺度联合估计方法。采用戴维宁等效电路模型,建立数学模型及状态空间方程。针对不同温度下电池特性不同的问题,在不同温度下开展了模型参数辨识,建立了参数随SOC及温度的变化关系。基于双扩展卡尔曼滤波(DEKF)算法建立了电池状态多尺度联合估计模型,对电池的SOC、极化电压在微观时间尺度上进行估计,对电池的容量在宏观时间尺度上进行估计,并对SOC估计中的容量进行更新,保证了电池长期估计的精度。在宽温度范围内进行验证,所建立的三元锂离子电池多尺度联合估计方法具有较高的精度。

     

  • 图 1  戴维宁模型

    Figure 1.  Thevenin model

    图 2  戴维宁模型端电压拟合

    Figure 2.  Terminal voltage fitting of Thevenin model

    图 3  不同温度下的电池特性曲线

    Figure 3.  Battery characteristics at different temperatures

    图 4  多时间尺度的SOC及容量联合估计方法

    Figure 4.  Multi-time scale SOC and capacity joint estimation method

    图 5  DST循环电流

    Figure 5.  Circulating current of DST

    图 6  端电压测量值与仿真值对比

    Figure 6.  Comparison of voltage measurementvalue and simulation value

    图 7  SOC估计结果及误差(25℃)

    Figure 7.  SOC estimation results and errors (25℃)

    图 8  温度对SOC估计的影响

    Figure 8.  Effect of temperature on SOC estimation

    图 9  容量估计结果

    Figure 9.  Capacity estimation results

    表  1  国轩三元锂离子电池主要技术指标

    Table  1.   Main technical indicators of Guoxuanternary lithium-ion battery

    参数 数值
    1C设计容量/Ah 57
    放电截止电压/V 3.0
    充电截止电压/V 4.2
    放电温度范围/℃ -30~50
    充电温度范围/℃ 0~50
    最大持续充电倍率 2C
    最大持续放电倍率 5C
    额定电压/V 3.6
    10s最大充电倍率 7.5C
    10s最大放电倍率 10C
    下载: 导出CSV
  • [1] RIVERA-BARRERA J P, MUÑOZ-GALEANO N, SARMIENTO-MALDONADO H O.SoC estimation for lithium-ion batteries:Review and future challenges[J].Electronics, 2017, 6(4):102. doi: 10.3390/electronics6040102
    [2] ANDWARI A M, PESIRIDIS A, RAJOO S, et al.A review of battery electric vehicle technology and readiness levels[J].Renewable and Sustainable Energy Reviews, 2017, 78:414-430. doi: 10.1016/j.rser.2017.03.138
    [3] 杨世春, 麻翠娟.基于PNGV改进模型的SOC估计算法[J].汽车工程, 2015, 37(5):582-586. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qcgc201505018

    YANG S C, MA C J.SOC estimation algorithm based on improved PNGV model[J].Automotive Engneering, 2015, 37(5):582-586(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qcgc201505018
    [4] LI Z, HUANG J, LIAW B Y, et al.On state-of-charge determination for lithium-ion batteries[J].Journal of Power Sources, 2017, 348:281-301. doi: 10.1016/j.jpowsour.2017.03.001
    [5] 徐颖, 沈英.基于改进卡尔曼滤波的电池SOC估算[J].北京航空航天大学学报, 2014, 40(6):855-860. doi: 10.13700/j.bh.1001-5965.2016.0796

    XU Y, SHEN Y.Improved battery state-of-charge estimation based on Kalman filter[J].Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(6):855-860(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0796
    [6] HANNAN M A, LIPU M S H, HUSSAIN A, et al.A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications:Challenges and recommendations[J].Renewable and Sustainable Energy Reviews, 2017, 78:834-854. doi: 10.1016/j.rser.2017.05.001
    [7] 印学浩, 宋宇晨, 刘旺, 等.基于多时间尺度的锂离子电池状态联合估计[J].仪器仪表学报, 2018, 39(8):118-126. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201808013

    YIN X H, SONG Y C, LIU W, et al.Multi-scale state joint estimation for lithium-ion battery[J].Chinese Journal of Scientific Instrument, 2018, 39(8):118-126(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=yqyb201808013
    [8] HU C, YOUN B D, CHUNG J.A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation[J].Applied Energy, 2012, 92:694-704. doi: 10.1016/j.apenergy.2011.08.002
    [9] PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs-Part 1.Background[J].Journal of Power Sources, 2004, 134(2):252-261. doi: 10.1016/j.jpowsour.2004.02.031
    [10] HE H W, ZHANG Y Z, XIONG R, et al.A novel Gaussian model based battery state estimation approach:State-of-energy[J].Applied Energy, 2015, 151:41-48. doi: 10.1016/j.apenergy.2015.04.062
    [11] SUN F, XIONG R, HE H.Estimation of state-of-charge and state-of-power capability of lithium-ion battery considering varying health conditions[J].Journal of Power Sources, 2014, 259:166-176. doi: 10.1016/j.jpowsour.2014.02.095
    [12] LIU C, LIU W, WANG L, et al.A new method of modeling and state of charge estimation of the battery[J].Journal of Power Sources, 2016, 320:1-12. doi: 10.1016/j.jpowsour.2016.03.112
    [13] SCHWUNK S, ARMBRUSTER N, STRAUB S, et al.Particle filter for state of charge and state of health estimation for lithium-iron phosphate batteries[J].Journal of Power Sources, 2013, 239:705-710. doi: 10.1016/j.jpowsour.2012.10.058
    [14] ROSCHER M A, ASSFALG J, BOHLEN O S.Detection of utilizable capacity deterioration in battery systems[J].IEEE Transactions on Vehicular Technology, 2011, 60(1):98-103. doi: 10.1109/TVT.2010.2090370
    [15] PLETT G L.Extended Kalman filtering for battery management systems of LiPB-based HEV battery packs-Part 3.State and parameter estimation[J].Journal of Power Sources, 2004, 134(2):277-292. doi: 10.1016/j.jpowsour.2004.02.033
    [16] YANG S C, DENG C, ZHANG Y L, et al.State of charge estimation for lithium-ion battery with a temperature-compensated model[J].Energies, 2017, 10(10):1560. doi: 10.3390/en10101560
    [17] SHEN P, OUYANG M G, LU L G, et al.The co-estimation of state of charge, state of health and state of function for lithium-ion batteries in electric vehicles[J].IEEE Transactions on Vehicular Technology, 2017, 67(1):92-103. http://ieeexplore.ieee.org/document/8036285/
    [18] 刘新天, 孙张驰, 何耀, 等.基于环境变量建模的锂电池SOC估计方法[J].东南大学学报(自然科学版), 2017, 47(2):306-312. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dndxxb201702018

    LIU X T, SUN Z C, HE Y, et al.SOC estimation method based on lithium-ion cell model considering environmental factors[J].Journal of Southeast University (Natural Science Edition), 2017, 47(2):306-312(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dndxxb201702018
    [19] YANG J F, XIA B, SHANG Y L, et al.Adaptive state-of-charge estimation based on a split battery model for electric vehicle applications[J].IEEE Transactions on Vehicular Technology, 2017, 66(12):10889-10898. doi: 10.1109/TVT.2017.2728806
    [20] XIONG R, CAO J Y, YU Q Q, et al.Critical review on the battery state of charge estimation methods for electric vehicles[J].IEEE Access, 2018, 6:1832-1843. doi: 10.1109/ACCESS.2017.2780258
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  427
  • HTML全文浏览量:  0
  • PDF下载量:  200
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-09
  • 录用日期:  2019-09-20
  • 刊出日期:  2020-08-20

目录

    /

    返回文章
    返回
    常见问答