留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于EDT的扫描测试压缩电路优化方法

李松 赵毅强 叶茂

李松, 赵毅强, 叶茂等 . 基于EDT的扫描测试压缩电路优化方法[J]. 北京航空航天大学学报, 2020, 46(8): 1601-1609. doi: 10.13700/j.bh.1001-5965.2019.0530
引用本文: 李松, 赵毅强, 叶茂等 . 基于EDT的扫描测试压缩电路优化方法[J]. 北京航空航天大学学报, 2020, 46(8): 1601-1609. doi: 10.13700/j.bh.1001-5965.2019.0530
LI Song, ZHAO Yiqiang, YE Maoet al. Optimization method of scan test compression circuit based on EDT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1601-1609. doi: 10.13700/j.bh.1001-5965.2019.0530(in Chinese)
Citation: LI Song, ZHAO Yiqiang, YE Maoet al. Optimization method of scan test compression circuit based on EDT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(8): 1601-1609. doi: 10.13700/j.bh.1001-5965.2019.0530(in Chinese)

基于EDT的扫描测试压缩电路优化方法

doi: 10.13700/j.bh.1001-5965.2019.0530
详细信息
    作者简介:

    李松  男, 硕士研究生。主要研究方向:集成电路可测试性设计

    赵毅强  男, 博士, 教授, 博士生导师。主要研究方向:射频集成电路设计、混合信号集成电路设计、集成电路安全检测技术、安全存储芯片设计、抗攻击技术、光电检测与成像系统设计、传感器系统设计

    叶茂  男, 博士, 副教授, 硕士生导师。主要研究方向:混合信号集成电路设计

    通讯作者:

    李松. E-mail:keepls_833@163.com

  • 中图分类号: TN47

Optimization method of scan test compression circuit based on EDT

More Information
  • 摘要:

    为了在集成电路可测试性设计(DFT)中实现更有效的测试向量压缩,减少测试数据容量和测试时间,采用嵌入式确定性测试(EDT)的扫描测试压缩方案分别对S13207、S15850、S38417和S38584基准电路进行了优化分析,通过研究测试向量和移位周期等影响测试压缩的因素,提出了固定测试端口和固定压缩率的扫描测试压缩电路优化方法。结果表明,在测试端口数量都为2,压缩率分别为12、14、16和24时具有较好的压缩效果,与传统自动测试向量生成(ATPG)相比,固定故障的测试数据容量减小了3.9~6.4倍,测试时间减少了3.8~6.2倍,跳变延时故障的测试数据容量减少了4.1~5.4倍,测试时间减少了3.8~5.2倍。所提方法通过改变测试端口数和压缩率的方式讨论了多种影响测试压缩的因素,给出扫描测试压缩电路的优化设计方案,提高了压缩效率,并对一个较大规模电路进行了仿真验证,可适用于集成电路的扫描测试压缩设计。

     

  • 图 1  EDT压缩结构[11]

    Figure 1.  Structure of EDT compression[11]

    图 2  EDT压缩逻辑与传统ATPG对比

    Figure 2.  EDT compression logic compared with traditional ATPG

    图 3  EDT压缩设计流程

    Figure 3.  EDT compression design flow

    图 4  EDT压缩优化方法

    Figure 4.  EDT compression optimization method

    图 5  ISCAS’89基准电路故障覆盖率损失

    Figure 5.  Fault coverage loss of ISCAS'89 benchmark circuits

    图 6  测试向量数量和扫描链测试向量占比

    Figure 6.  Number of test patterns and scanchain test patterns percentage

    图 7  移位周期数和EDT额外移位周期占比

    Figure 7.  Shift cycles and EDT additional cycles percentage

    图 8  固定测试端口数分析结果

    Figure 8.  Analysis results by constant number of test ports

    图 9  固定压缩率分析结果

    Figure 9.  Analysis results by constant compression ratio

    表  1  压缩分析参数变化

    Table  1.   Change of compression analysis parameters

    测试结果 固定测试端口 固定压缩率
    P 增加 基本不变
    P′c 增加 增加
    C 先减少后增加 减少
    C′a 增加 增加
    FC 减少 基本不变
    V′ 先减少后增加 增加
    T′ 先减少后增加 减少
    下载: 导出CSV

    表  2  基准电路参数变化

    Table  2.   Change of benchmark circuits parameters

    基准电路 G FFs L Fau
    S13207 Bef. 3 404 447 224 12 630
    Aft. 4 009 507 19 14 894
    S15850 Bef. 4 168 448 224 16 194
    Aft. 4 874 508 14 19 198
    S38417 Bef. 12 690 1 484 742 46 692
    Aft. 13 429 1 550 47 51 892
    S38584 Bef. 12 906 1 235 620 51 306
    Aft. 14 126 1 305 26 56 018
    下载: 导出CSV

    表  3  固定故障测试压缩优化数据对比

    Table  3.   Comparison of stuck-at faults test compression optimization data

    基准
    电路
    FC/% P P′c/% C/103 C′a/% V′/KB Div.
    (V′)
    T′/(10-2μs) Div.
    (T′)
    Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft.
    S13207 99.81 98.13 130 176 12.5 29.1 6.1 43.0 58.2 12.0 4.9 29.1 6.1 4.7
    S15850 99.94 98.72 144 295 14.0 32.3 8.5 44.2 64.5 16.5 3.9 32.3 8.5 3.8
    S38417 100 99.05 156 329 11.6 115.8 21.0 25.0 231.5 41.5 5.6 115.8 21.0 5.5
    S38584 99.91 99.40 161 374 10.4 99.8 16.1 37.3 199.6 31.4 6.4 99.8 16.1 6.2
    SS 98.16 98.14 4 267 5 597 0.7 56 153.7 2 776.1 7.9 112 298.9 5 541.0 20.3 56 153.7 2 776.1 20.2
    下载: 导出CSV

    表  4  跳变延时故障测试压缩优化数据对比

    Table  4.   Comparison of transition faults test compression optimization data

    基准电路 FC/% P P′c/% C/103 C′a/% V′/KB Div.
    (V′)
    T′/(10-2μs) Div.
    (T′)
    Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft. Bef. Aft.
    S13207 82.31 81.27 200 253 8.7 44.8 9.1 41.9 89.6 17.2 5.2 44.8 9.1 4.9
    S15850 76.34 75.93 175 332 12.0 39.2 10.2 43.8 78.4 19.3 4.1 39.2 10.2 3.8
    S38417 94.21 93.63 255 734 5.2 189.2 47.6 24.7 378.4 92.5 4.1 189.2 47.6 4.0
    S38584 81.10 80.14 319 874 4.5 197.8 38.4 36.4 395.6 73.4 5.4 197.8 38.4 5.2
    SS 84.09 82.80 6 830 8 790 0.4 89 889.6 4 368.5 7.3 179 751.9 8 702.1 20.7 89 889.6 4 368.5 20.6
    下载: 导出CSV
  • [1] WANG L T, WU C W, WEN X Q.VLSI test principles and architectures design for testability[M].San Francisco:Morgan Kaufmann Publishers Inc., 2006:351-357.
    [2] WANG L T, STROUD C E, TOUBA N.System-on-chip test architectures:Nanometer design for testability[M].San Francisco:Morgan Kaufmann Publishers Inc., 2007:118-122.
    [3] 李晓维, 韩银和, 胡瑜, 等.数字集成电路测试优化[M].北京:科学出版社, 2010:13-44.

    LI X W, HAN Y H, HU Y, et al.Test optimization of digital integrated circuit[M].Beijing:Science Press, 2010:13-44(in Chinese).
    [4] XIANG D, LI K, SUN J, et al.Reconfigured scan forest for test application cost, test data volume, and test power reduction[J].IEEE Transactions on Computers, 2007, 56(4):557-562. doi: 10.1109/TC.2007.1002
    [5] XIANG D, CHEN Z, WANG L T.Scan flip-flop grouping to compress test data and compact test responses for launch-on-capture delay testing[J].ACM Transactions on Design Automation of Electronic Systems, 2012, 17(2):18. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b0bdbf9719e844eb702a489264297ead
    [6] RAJSKI J, TYSZER J, KASSAB M, et al.Embedded deterministic test[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2004, 23(5):776-792. doi: 10.1109/TCAD.2004.826558
    [7] LIU X, YU C, QI Y, et al.Case study of testing a SoC design with mixed EDT channel sharing and channel broadcasting[C]//2016 IEEE 25th North Atlantic Test Workshop(NATW).Piscataway: IEEE Press, 2016: 12-17.
    [8] HUANG Y, KASSAB M, JAHANGIRI J, et al.Test compression improvement with EDT channel sharing in SoC designs[C]//2014 IEEE 23rd North Atlantic Test Workshop(NATW).Piscataway: IEEE Press, 2014: 22-31.
    [9] CZYSZ D, KASSAB M, LIN X, et al.Low-power scan operation in test compression environment[J].IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2009, 28(11):1742-1755. doi: 10.1109/TCAD.2009.2030445
    [10] MANASY M, DEVIKA K N, MURUGAN S.Performance analysis of embedded deterministic test (EDT) on standard benchmark designs[C]//2017 International Conference on Technological Advancements in Power and Energy (TAP Energy).Piscataway: IEEE Press, 2017: 1-5.
    [11] LI G L, ZHAO H, YANG Q, et al.Industrial case studies of SoC test scheduling optimization by selecting appropriate EDT architectures[C]//2018 IEEE International Test Conference in Asia (ITC-Asia).Piscataway: IEEE Press, 2018: 109-114.
    [12] Mentor Graphics Corporation.Tessent® TestKompress® user-s manual[EB/OL].[2019-08-17].http://support.mentor.com.
    [13] Synopsys Corporation.DFT compiler, DFTMAX, and DFTMAXTM ultra user guide[EB/OL].[2019-08-26].http://www.synopsys.com.
    [14] Mentor Graphics Corporation.Tessent® shell reference manual[EB/OL].[2019-09-13].http://support.mentor.com.
    [15] LI G L, QIAN J, ZUO Y, et al.Scan test data volume reduction for SoC designs in EDT environment[C]//201322nd Asian Test Symposium.Piscataway: IEEE Press, 2013: 103-104.
    [16] GEBALA M, MRUGALSKI M, MUKHERJEE N, et al.On using implied values in EDT-based test compression[C]//201451st ACM/EDAC/IEEE Design Automation Conference (DAC).Piscataway: IEEE Press, 2014: 1-6.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  892
  • HTML全文浏览量:  14
  • PDF下载量:  273
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-29
  • 录用日期:  2020-01-15
  • 刊出日期:  2020-08-20

目录

    /

    返回文章
    返回
    常见问答