留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

吸气流动控制对翼身融合飞机气动特性的影响

贾媛 曹翔 吴江浩

贾媛, 曹翔, 吴江浩等 . 吸气流动控制对翼身融合飞机气动特性的影响[J]. 北京航空航天大学学报, 2022, 48(6): 1065-1071. doi: 10.13700/j.bh.1001-5965.2020.0715
引用本文: 贾媛, 曹翔, 吴江浩等 . 吸气流动控制对翼身融合飞机气动特性的影响[J]. 北京航空航天大学学报, 2022, 48(6): 1065-1071. doi: 10.13700/j.bh.1001-5965.2020.0715
JIA Yuan, CAO Xiang, WU Jianghaoet al. Influence of suction flow control on aerodynamic characteristics of blended-wing-body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1065-1071. doi: 10.13700/j.bh.1001-5965.2020.0715(in Chinese)
Citation: JIA Yuan, CAO Xiang, WU Jianghaoet al. Influence of suction flow control on aerodynamic characteristics of blended-wing-body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1065-1071. doi: 10.13700/j.bh.1001-5965.2020.0715(in Chinese)

吸气流动控制对翼身融合飞机气动特性的影响

doi: 10.13700/j.bh.1001-5965.2020.0715
详细信息
    通讯作者:

    吴江浩,E-mail: buaawjh@buaa.edu.cn

  • 中图分类号: V221.3

Influence of suction flow control on aerodynamic characteristics of blended-wing-body aircraft

More Information
  • 摘要:

    以采用分布式动力的翼身融合飞机为研究对象,探究了吸气流动控制方式(吸气位置和吸气动量)对飞机起飞和巡航状态下气动特性的影响规律,解释了吸气流动控制影响翼身融合飞机气动特性的机理。研究结果表明:起飞大攻角状态下,采用外翼段吸气方案(吸气位置为0.05c,吸气动量为0.02),飞机最大升力系数与无吸气状态相比提升7.16%;巡航状态下,采用中心体段吸气方案(吸气位置为0.6c,吸气动量为0.012 5),可改善动力系统的压力分布,飞机升阻比与无吸气状态相比最大提升2.14%。

     

  • 图 1  带有边界层吸入的翼身融合飞机

    Figure 1.  Blended-wing-body aircraft with boundary layer suction

    图 2  中心体及外翼段吸气布置示意图

    Figure 2.  Schematic diagram of suction arrangement of center body and outer wing section

    图 3  不同弦向位置下的气动特性系数对比

    Figure 3.  Comparison of aerodynamic characteristic coefficients at different chordal positions

    图 4  不同动量系数下的气动特性系数对比

    Figure 4.  Comparison of aerodynamic characteristic coefficients under different momentum coefficients

    图 5  相同飞行条件下无吸气和0.6c吸气压力云图对比

    Figure 5.  Comparison of pressure contour of no-suction and 0.6c suction under the same flight conditions

    图 6  巡航状态时不同弦向位置下的气动特性系数对比

    Figure 6.  Comparison of aerodynamic characteristic coefficients at different chordal positions in cruising state

    图 7  不同吸气动量系数下中心体部分压力对比

    Figure 7.  Comparison of pressures in central body under different suction momentum coefficients

    图 8  巡航状态时不同动量系数下的气动特性系数对比

    Figure 8.  Comparison of aerodynamic characteristic coefficients at different momentum coefficients in cruising state

    表  1  BWB-350总体参数

    Table  1.   Overall parameters of BWB-350

    参数 数值
    最大航程/km 14 800
    巡航高度/m 11 000
    巡航马赫数 0.85
    起飞离地速度/(m·s-1) 84
    进场速度/(m·s-1) 72
    最大起飞重量/kg 232 000
    下载: 导出CSV

    表  2  BWB-350几何参数

    Table  2.   Geometric parameters of BWB-350

    参数 数值
    翼展/m 68
    参考面积/m2 560
    外翼前缘后掠角/(°) 36
    展弦比 8.14
    平均气动弦长/m 10.6
    重心距前缘距离/m 27.3
    下载: 导出CSV

    表  3  不同ymax+网格的计算结果对比(Ma=0.21, α=10°)

    Table  3.   Comparison of calculation results of different ymax+ grids (Ma=0.21, α=10°)

    网格密度/104 第1层网格高度 ymax+ CL Cd
    150 1×10-3 140 0.984 2 0.116 43
    150 1×10-4 16 0.989 3 0.117 39
    150 2×10-5 2 0.989 9 0.117 89
    150 1×10-5 0.8 0.989 7 0.117 92
    下载: 导出CSV

    表  4  不同网格密度计算结果对比(Ma=0.21, α=10°)

    Table  4.   Comparison of calculation results of different overall grid densities (Ma=0.21, α=10°)

    网格密度/104 第1层网格高度 ymax+ CL Cd
    70 2×10-5 2 0.985 3 0.116 41
    100 2×10-5 2 0.986 2 0.116 93
    150 2×10-5 2 0.989 9 0.117 89
    230 2×10-5 2 0.989 8 0.117 84
    下载: 导出CSV

    表  5  不同ymax+网格的计算结果对比(Ma=0.85, α=2.6°)

    Table  5.   Comparison of calculation results of different ymax+ grids (Ma=0.85, α=2.6°)

    网格密度/104 第1层网格高度 ymax+ CL Cd
    150 1×10-3 140 0.353 7 0.016 50
    150 1×10-4 16 0.354 0 0.015 25
    150 2×10-5 2 0.354 1 0.015 50
    150 1×10-5 0.8 0.354 1 0.015 50
    下载: 导出CSV

    表  6  不同网格密度计算结果对比(Ma=0.85, α=2.6°)

    Table  6.   Comparison of calculation results of different overall grid densities (Ma=0.85, α=2.6°)

    网格密度/104 第1层网格高度 ymax+ CL Cd
    70 2×10-5 2 0.354 5 0.016 50
    100 2×10-5 2 0.353 9 0.015 75
    150 2×10-5 2 0.354 1 0.015 50
    230 2×10-5 2 0.354 1 0.015 49
    下载: 导出CSV

    表  7  飞行条件

    Table  7.   Flight conditions

    状态 高度/m 马赫数 MFR 静压/Pa 静温/K 密度/(kg·m-3)
    起飞 0 0.21 1.60 101 325 288.2 1.224 9
    巡航 11 000 0.85 0.68 22 700 216.7 0.363 9
    注:MFR为质量流率。
    下载: 导出CSV
  • [1] 索欣诗. 翼身融合布局大型客机总体方案综合分析评价与优化[D]. 南京: 南京航空航天大学, 2017: 1-20.

    SUO X S. Integrated analysis, evaluation and optimization in conceptual design of blended wing body commercial aircraft[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 1-20(in Chinese).
    [2] 闫万方, 吴江浩, 张艳来. 分布式推进关键参数对BWB飞机气动特性影响[J]. 北京航空航天大学学报, 2015, 41(6): 1055-1065. doi: 10.13700/j.bh.1001-5965.2014.0390

    YAN W F, WU J H, ZHANG Y L. Effects of distributed propulsion crucial variables on aerodynamic performance of blended wing body aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(6): 1055-1065(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0390
    [3] LIEBECK R H. Design of the blended wing body subsonic transport[J]. Journal of Aircraft, 2004, 41(1): 10-25. doi: 10.2514/1.9084
    [4] 朱自强, 王晓璐, 吴宗成, 等. 民机的一种新型布局形式: 翼身融合体飞机[J]. 航空学报, 2008, 29(1): 49-59. doi: 10.3321/j.issn:1000-6893.2008.01.007

    ZHU Z Q, WANG X L, WU Z C, et al. A new type of transport-Blended wing body aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2008, 29(1): 49-59(in Chinese). doi: 10.3321/j.issn:1000-6893.2008.01.007
    [5] 邓海强. 翼身融合布局无人机总体多学科设计优化研究[D]. 南京: 南京航空航天大学, 2017: 6-17.

    DENG H Q. Multidisciplinary design optimization for preliminary design of unmanned aerial vehicle with blended wing body[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2017: 6-17(in Chinese).
    [6] 王刚, 张彬乾, 张明辉, 等. 翼身融合民机总体气动技术研究进展与展望[J]. 航空学报, 2019, 40(9): 623046. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201909001.htm

    WANG G, ZHANG B Q, ZHANG M H, et al. Research progress and prospect for conceptual and aerodynamic technology of blended-wing-body civil aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(9): 623046(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201909001.htm
    [7] 刘铁中. 三翼面布局飞机低速气动性能的试验研究[D]. 北京: 北京航空航天大学, 1999: 6-12.

    LIU T Z. Experimental research on low-speed aerodynamic performance of aircraft with three wings[D]. Beijing: Beihang University, 1999: 6-12(in Chinese).
    [8] 于哲慧, 刘沛清. CJ818高升力构型吹吸气流动控制研究[J]. 民用飞机设计与研究, 2009(S1): 12-19. https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ2009S1003.htm

    YU Z H, LIU P Q. Research on blowing and suction flow control of CJ818 high-lift configuration[J]. Civil Aircraft Design and Research, 2009(S1): 12-19(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-MYFJ2009S1003.htm
    [9] 朱佳晨, 史志伟, 孙琪杰, 等. 基于主动流动控制技术的高超声速翼型前段气动特性的数值模拟研究[C]//第十届全国流体力学学术会议, 2018.

    ZHU J C, SHI Z W, SUN Q J, et al. Numerical simulation research on the aerodynamic characteristics of hypersonic airfoil front section based on active flow control technology[C]//The 10th National Conference on Fluid Mechanics, 2018(in Chinese).
    [10] OGINO K, MAMORI H, FUKUSHIMA N, et al. Direct numerical simulation of Taylor-Couette turbulent flow controlled by a traveling wave-like blowing and suction[J]. International Journal of Heat and Fluid Flow, 2019, 80: 108463. doi: 10.1016/j.ijheatfluidflow.2019.108463
    [11] 张志勇, 王团团, 陈志华, 等. 低雷诺数下吹吸气射流对NACA0012翼型气动性能的影响[J]. 空气动力学学报, 2020, 38(1): 58-65. https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202001008.htm

    ZHANG Z Y, WANG T T, CHEN Z H, et al. The effect of blowing/suction jet on the aerodynamic performance of airfoil NACA0012 at low Reynolds number[J]. Acta Aerodynamica Sinica, 2020, 38(1): 58-65(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-KQDX202001008.htm
    [12] 贲宝佳. 一种新型吹吸气相结合的方法控制流动分离[J]. 科技创新与应用, 2017(2): 56. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201702033.htm

    BEN B J. A new method of combined blowing and suction to control flow separation[J]. Technology Innovation and Application, 2017(2): 56(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY201702033.htm
    [13] HUANG L, HUANG P G, LEBEAU R P, et al. Numerical study of blowing and suction control mechanism on NACA0012 airfoil[J]. Journal of Aircraft, 2004, 41(5): 1005-1013. doi: 10.2514/1.2255
    [14] GENC M, KAYNAK V. Control of flow separation and transition point over an aerofoil at low Re number using simultaneous blowing and suction: AIAA 2009-3672[R]. Reston: AIAA, 2009.
    [15] AGARWAL G, REDINIOTIS O, TRAUB L. An experimental investigation on the effects of pulsed air blowing separation control on NACA0015: AIAA 2008-737[R]. Reston: AIAA, 2008.
    [16] WAHIDI R, BRIDGES D. Effects of distributed suction on an airfoil at low Reynolds number[C]//40th Fluid Dynamics Conference and Exhibit. Reston: AIAA, 2010.
  • 加载中
图(8) / 表(7)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  11
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-26
  • 录用日期:  2021-01-30
  • 刊出日期:  2022-06-20

目录

    /

    返回文章
    返回
    常见问答