留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多四旋翼无人机系统分布式分层编队合围控制

郑伟铭 徐扬 罗德林

郑伟铭, 徐扬, 罗德林等 . 多四旋翼无人机系统分布式分层编队合围控制[J]. 北京航空航天大学学报, 2022, 48(6): 1091-1105. doi: 10.13700/j.bh.1001-5965.2020.0725
引用本文: 郑伟铭, 徐扬, 罗德林等 . 多四旋翼无人机系统分布式分层编队合围控制[J]. 北京航空航天大学学报, 2022, 48(6): 1091-1105. doi: 10.13700/j.bh.1001-5965.2020.0725
ZHENG Weiming, XU Yang, LUO Delinet al. Distributed hierarchical formation-containment control of multiple quadrotor UAV systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1091-1105. doi: 10.13700/j.bh.1001-5965.2020.0725(in Chinese)
Citation: ZHENG Weiming, XU Yang, LUO Delinet al. Distributed hierarchical formation-containment control of multiple quadrotor UAV systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 1091-1105. doi: 10.13700/j.bh.1001-5965.2020.0725(in Chinese)

多四旋翼无人机系统分布式分层编队合围控制

doi: 10.13700/j.bh.1001-5965.2020.0725
基金项目: 

航空电子系统综合技术重点实验室和航空科学基金联合资助项目 20185568005

详细信息
    通讯作者:

    罗德林, E-mail: luodelin1204@xmu.edu.cn

  • 中图分类号: V221+.3;TB553

Distributed hierarchical formation-containment control of multiple quadrotor UAV systems

Funds: 

Jointly Supported by the Science and Technology on Avionics Integration Laboratory and the Aeronautical Science Foundation of China 20185568005

More Information
  • 摘要:

    针对带有多个领航者与跟随者的欠驱动四旋翼无人机群系统, 提出了一种分布式分层编队合围控制方法。设计分层分布式有限时间滑模估计器, 实现在仅有部分领航者获取到期望轨迹的条件下, 每架无人机都能生成其满足控制需求的估计位置信息。针对六自由度欠驱动四旋翼无人机模型的特点, 提出一种无人机位置层和姿态层的分层控制方法, 实现了无人机对所生成的估计位置的跟踪控制, 该方法采用高阶导数逼近算法, 防止在求解期望角速度的过程中出现微分爆炸。所提方法能在满足姿态稳定收敛的条件下实现有效的编队合围控制。通过数值仿真验证了所提方法的有效性。

     

  • 图 1  四旋翼无人机示意图

    Figure 1.  Schematic diagram of quadrotor UAV

    图 2  编队合围控制架构

    Figure 2.  Formation-containment control architecture

    图 3  通信拓扑

    Figure 3.  Communication topology

    图 4  两种编队在空间中的航迹

    Figure 4.  Trajectories of two type of formations in space

    图 5  领航者与跟随者的期望速度估计误差

    Figure 5.  Estimated errors of leader and follower desired velocities

    图 6  领航者与跟随者的估计速度跟踪误差

    Figure 6.  Tracking errors of leader and follower estimated velocities

    图 7  领航者与跟随者的期望位置估计误差

    Figure 7.  Estimated errors of leader and follower desired positions

    图 8  领航者与跟随者的估计位置跟踪误差

    Figure 8.  Tracking errors of leader and follower estimated positions

    图 9  领航者与跟随者的角速度跟踪误差

    Figure 9.  Tracking errors of leader and follower angular velocities

    图 10  领航者与跟随者的姿态跟踪误差

    Figure 10.  Tracking errors of leader and follower attitude

    图 11  第3架与第16架四旋翼无人机对估计速度1~3阶导数的逼近误差

    Figure 11.  Approximation errors of the first to third derivatives of the 3rd and 16th quadrotor UAVs' estimated velocities

    图 12  两种编队合围航迹

    Figure 12.  Formation-containment trajectories of two type of formations

    表  1  仿真条件

    Table  1.   Simulation conditions

    控制参数 初始状态
    α1=α2=α3=α4=8
    kΞ=kd=1.5

    ks=2
    kq=kβ=20
    kΨ=0.1
    ζ0=ζ1=ζ2=ζ3=0.4
    ξ0=ξ1=ξ2=ξ3=0.2
    p1(0)=[-2 2 0]T, p2(0)=[2 2 0]T
    p3(0)=[2 -2 0]T, p4(0)=[-2 -2 0]T
    p5(0)=[-4 4 0]T, p6(0)=[4 4 0]T
    p7(0)=[4 -4 0]T, p8(0)=[-4 -4 0]T
    p9(0)=[-6 6 0]T, p10(0)=[6 6 0]T
    p11(0)=[6 -6 0]T, p12(0)=[-6 -6 0]T
    p13(0)=[-12 12 0]T, p14(0)=[12 12 0]T
    p15(0)=[12 -12 0]T, p16(0)=[-12 -12 0]T
    Δ0=Δ1=Δ2=Δ3=-1 vi(0)=[0 0 0]T, i∈1, 2, …, 16
    ωi(0)=[0 0 0]T, i∈1, 2, …, 16
    Qi(0)=[0 0 0 1]T, i∈1, 2, …, 16
    下载: 导出CSV
  • [1] 韩亮, 任章, 董希旺, 等. 多无人机协同控制方法及应用研究[J]. 导航定位与授时, 2018, 5(4): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201804002.htm

    HAN L, REN Z, DONG X W, et al. Research on cooperative control method and application for multiple unmanned aerial vehicles[J]. Navigation Positioning and Timing, 2018, 5(4): 1-7(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201804002.htm
    [2] 马思迁, 董朝阳, 马鸣宇, 等. 基于自适应通信拓扑四旋翼无人机编队重构控制[J]. 北京航空航天大学学报, 2018, 44(4): 841-850. doi: 10.13700/j.bh.1001-5965.2017.0281

    MA S Q, DONG C Y, MA M Y, et al. Formation reconfiguration control of quadrotor UAVs based on adaptive communication topology[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(4): 841-850(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0281
    [3] 徐扬, 罗德林, 周路鹏, 等. 基于增益矩阵的二阶集群系统鲁棒分布式立体编队控制[J]. 中国科学: 技术科学, 2020, 50(4): 461-474. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202004008.htm

    XU Y, LUO D L, ZHOU L P, et al. A gain matrix approach for robust distributed 3D formation control with second order swarm systems[J]. Scientia Sinica: Technologica, 2020, 50(4): 461-474(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK202004008.htm
    [4] 任章, 郭栋, 董希旺, 等. 飞行器集群协同制导控制方法及应用研究[J]. 导航定位与授时, 2019, 6(5): 1-9. https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201905003.htm

    REN Z, GUO D, DONG X W, et al. Research on the cooperative guidance and control method and application for aerial vehicle swarm systems[J]. Navigation Positioning and Timing, 2019, 6(5): 1-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-DWSS201905003.htm
    [5] 陈杰, 辛斌. 有人/无人系统自主协同的关键科学问题[J]. 中国科学: 信息科学, 2018, 48(9): 1270-1274. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201809012.htm

    CHEN J, XIN B. Key scientific problems in the autonomous cooperation of manned-unmanned systems[J]. Scientia Sinica: Informationis, 2018, 48(9): 1270-1274(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201809012.htm
    [6] 段海滨, 张岱峰, 范彦铭, 等. 从狼群智能到无人机集群协同决策[J]. 中国科学: 信息科学, 2019, 49(1): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201901008.htm

    DUAN H B, ZHANG D F, FAN Y M, et al. From wolf pack intelligence to UAV swarm cooperative decisionmaking[J]. Scientia Sinica: Informationis, 2019, 49(1): 112-118(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-PZKX201901008.htm
    [7] LUO D L, SHAO J, XU Y, et al. Coevolution pigeon-inspired optimization with cooperation-competition mechanism for multi-UAV cooperative region search[J]. Applied Sciences, 2019, 9(5): 827. doi: 10.3390/app9050827
    [8] 周绍磊, 祁亚辉, 张雷, 等. 切换拓扑下无人机集群系统时变编队控制[J]. 航空学报, 2017, 38(4): 320452. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201704025.htm

    ZHOU S L, QI Y H, ZHANG L, et al. Time-varying formation control of UAV swarm systems with switching topologies[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(4): 320452(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201704025.htm
    [9] 胡春鹤, 陈宗基. 基于Helly定理的多智能体最短时间一致性[J]. 北京航空航天大学学报, 2015, 41(9): 1701-1707. doi: 10.13700/j.bh.1001-5965.2014.0676

    HU C H, CHEN Z J. Helly-theorem-based time-optimal consensus for multi-agent systems[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1701-1707(in Chinese). doi: 10.13700/j.bh.1001-5965.2014.0676
    [10] REN W. Consensus strategies for cooperative control of vehicle formations[J]. IET Control Theory & Applications, 2007, 1(2): 505-512.
    [11] 姚辉, 席建祥, 王成, 等. 二阶多智能体系统自抗扰编队跟踪与避撞控制[J]. 北京航空航天大学学报, 2020, 46(5): 960-977. doi: 10.13700/j.bh.1001-5965.2019.0359

    YAO H, XI J X, WANG C, et al. Active disturbance rejection based formation tracking and collision avoidance control for second-order multi-agent system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 960-977(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0359
    [12] 陈亮名. 考虑约束的多智能体Euler-Lagrange系统编队-包含控制[D]. 哈尔滨: 哈尔滨工业大学, 2019.

    CHEN L M. Formation-containment control of multi-agent Euler-Lagrange systems with constraints[D]. Harbin: Harbin Institute of Technology, 2019(in Chinese).
    [13] DONG X W. Formation and containment control for high-order linear swarm systems[M]. Berlin: Springer, 2016.
    [14] LI C J, CHEN L M, GUO Y N, et al. Formation-containment control for networked Euler-Lagrange systems with input saturation[J]. Nonlinear Dynamics, 2018, 91(2): 1307-1320. doi: 10.1007/s11071-017-3946-7
    [15] CHEN L M, LI C J, MEI J, et al. Adaptive cooperative formation-containment control for networked Euler-Lagrange systems without using relative velocity information[J]. IET Control Theory & Applications, 2017, 11(9): 1450-1458.
    [16] DONG X W, YU B C, SHI Z Y, et al. Time-varying formation control for unmanned aerial vehicles: Theories and applications[J]. IEEE Transactions on Control Systems Technology, 2015, 23(1): 340-348. doi: 10.1109/TCST.2014.2314460
    [17] DONG X W, ZHOU Y, REN Z, et al. Time-varying formation tracking for second-order multi-agent systems subjected to switching topologies with application to quadrotor formation flying[J]. IEEE Transactions on Industrial Electronics, 2017, 64(6): 5014-5024. doi: 10.1109/TIE.2016.2593656
    [18] ZHOU Y, DONG X W, LU G, et al. Time-varying formation control for unmanned aerial vehicles with switching interaction topologies[C]//2014 International Conference on Unmanned Aircraft Systems (ICUAS). Piscataway: IEEE Press, 2014: 1203-1209.
    [19] ZHANG W Q, DONG C Y, RAN M P, et al. Fully distributed time-varying formation tracking control for multiple quadrotor vehicles via finite-time convergent extended state observer[J]. Chinese Journal of Aeronautics, 2020, 33(11): 2907-2920. doi: 10.1016/j.cja.2020.03.004
    [20] XU Y, ZHAO S Y, LUO D L, et al. Affine formation maneuver control of high-order multi-agent systems over directed networks[J]. Automatica, 2020, 118: 109004. doi: 10.1016/j.automatica.2020.109004
    [21] ZHAO S Y. Affine formation maneuver control of multiagent systems[J]. IEEE Transactions on Automatic Control, 2018, 63(12): 4140-4155. doi: 10.1109/TAC.2018.2798805
    [22] SHAO X L, TIAN B, YANG W. Fixed-time trajectory following for quadrotors via output feedback[J]. ISA Transactions, 2021, 110: 213-224. doi: 10.1016/j.isatra.2020.10.039
    [23] LI D Y, ZHANG W, HE W, et al. Two-layer distributed formation-containment control of multiple Euler-Lagrange systems by output feedback[J]. IEEE Transactions on Cybernetics, 2019, 49(2): 675-687. doi: 10.1109/TCYB.2017.2786318
    [24] YU Y S, DING X L. A global tracking controller for underactuated aerial vehicles: Design, analysis, and experimental tests on quadrotor[J]. IEEE/ASME Transactions on Mechatronics, 2016, 21(5): 2499-2511. doi: 10.1109/TMECH.2016.2558678
    [25] MENG Z Y, REN W, YOU Z. Distributed finite-time attitude containment control for multiple rigid bodies[J]. Automatica, 2010, 46(12): 2092-2099. doi: 10.1016/j.automatica.2010.09.005
    [26] SHUSTER M D. A survey of attitude representations[J]. Journal of Astronautical Sciences, 1993, 41(4): 439-517.
    [27] HORN R A, JOHNSON C R. Matrix analysis[M]. Cambridge: Cambridge University Press, 2012.
    [28] BHAT S P, BERNSTEIN D S. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Control and Optimization, 2000, 38(3): 751-766. doi: 10.1137/S0363012997321358
    [29] ROBERTS A, TAYEBI A. Adaptive position tracking of VTOL UAVs[J]. IEEE Transactions on Robotics, 2011, 27(1): 129-142. doi: 10.1109/TRO.2010.2092870
    [30] ZHU B, HUO W. Nonlinear control for a model-scaled helicopter with constraints on rotor thrust and fuselage attitude[J]. Acta Automatica Sinica, 2014, 40(11): 2654-2664. doi: 10.1016/S1874-1029(14)60411-0
    [31] LI C Y, JING W X, GAO C S. Adaptive backstepping-based flight control system using integral filters[J]. Aerospace Science and Technology, 2009, 13(2-3): 105-113. doi: 10.1016/j.ast.2008.05.002
    [32] XU Y, LUO D L, LI D Y, et al. Target-enclosing affine formation control of two-layer networked spacecraft with collision avoidance[J]. Chinese Journal of Aeronautics, 2019, 32(12): 2679-2693. doi: 10.1016/j.cja.2019.04.016
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  59
  • HTML全文浏览量:  16
  • PDF下载量:  20
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 录用日期:  2021-02-06
  • 刊出日期:  2022-06-20

目录

    /

    返回文章
    返回
    常见问答