留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于μCT图像的PVC泡沫微观试样几何模型生成算法

周勇 薛斌 郭昀鑫 王人鹏

周勇, 薛斌, 郭昀鑫, 等 . 基于μCT图像的PVC泡沫微观试样几何模型生成算法[J]. 北京航空航天大学学报, 2022, 48(6): 968-978. doi: 10.13700/j.bh.1001-5965.2020.0726
引用本文: 周勇, 薛斌, 郭昀鑫, 等 . 基于μCT图像的PVC泡沫微观试样几何模型生成算法[J]. 北京航空航天大学学报, 2022, 48(6): 968-978. doi: 10.13700/j.bh.1001-5965.2020.0726
ZHOU Yong, XUE Bin, GUO Yunxin, et al. An algorithm for generating geometric models of microscopic specimens of PVC foam based on μCT images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 968-978. doi: 10.13700/j.bh.1001-5965.2020.0726(in Chinese)
Citation: ZHOU Yong, XUE Bin, GUO Yunxin, et al. An algorithm for generating geometric models of microscopic specimens of PVC foam based on μCT images[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(6): 968-978. doi: 10.13700/j.bh.1001-5965.2020.0726(in Chinese)

基于μCT图像的PVC泡沫微观试样几何模型生成算法

doi: 10.13700/j.bh.1001-5965.2020.0726
基金项目: 

国家重点研发计划 2016YFB1200601-16

详细信息
    通讯作者:

    王人鹏, E-mail: renpengwang@126.com

  • 中图分类号: V254.1+9;TB332

An algorithm for generating geometric models of microscopic specimens of PVC foam based on μCT images

Funds: 

National Key R & D Program of China 2016YFB1200601-16

More Information
  • 摘要:

    在泡沫微观结构的数值模拟中,泡沫空腔的几何特征和排列状态对计算效率及计算结果有着重要的影响,基于前进面搜索几何构造算法和Laguerre划分算法,提出了一种新的PVC泡沫微观试样几何模型生成算法。从μCT扫描图像重构泡沫的真实几何模型,测量泡沫空腔的几何特征及体积分布规律,将测量得到的泡沫空腔体积转化为球体,并通过前进面搜索几何构造算法投入空间,通过Laguerre划分算法将空间球体进行区域划分,赋予壁厚参数,构建出闭孔PVC泡沫的微观几何模型。所建立的模型在微观几何特征上与实际材料符合较好。

     

  • 图 1  滤波前后二维断层图像

    Figure 1.  Two-dimensional tomographic images before and after filtering

    图 2  划分后空腔

    Figure 2.  Cavity after division

    图 3  三维重构模型

    Figure 3.  Three-dimensional reconstruction model

    图 4  空腔几何特征统计

    Figure 4.  Statistics of cavity geometry

    图 5  空腔壁厚统计(PDF)

    Figure 5.  Cavity wall thickness statistics(PDF)

    图 6  填充球体生成示意及分布

    Figure 6.  Filled sphere generation and distribution

    图 7  重叠时球体的放置演化方法

    Figure 7.  Placement evolution method of spheres when overlapping

    图 8  前进面搜索几何构造算法流程

    Figure 8.  Flow chart of advancing surface search geometric construction algorithm

    图 9  数值试样生成

    Figure 9.  Numerical sample generation

    图 10  数值模型几何特征统计

    Figure 10.  Numerical model geometric feature statistics

    图 11  数值模型结果与实验结果对比

    Figure 11.  Comparison of numerical model results with experimental results

    图 12  数值模型空腔率

    Figure 12.  Numerical model cavity ratio

    图 13  不同种类球体堆积

    Figure 13.  Different kinds of spheres stacked

    图 14  优化算法流程

    Figure 14.  Flow chart of optimization algorithm

    图 15  优化试样几何特征对比

    Figure 15.  Comparison geometric characteristics of optimized sample

    表  1  不同密度泡沫空腔率的数值模型与实验对比

    Table  1.   Numerical model and experimental comparison of foam cavity ratio of different densities

    泡沫类型 空腔壁厚/μm 真实空腔率/% 数值模型平均空腔率/% 误差/%
    H45 7.44 96.79 94.77 2.09
    H80 8.84 94.29 93.79 0.53
    H100 11.9 92.86 91.57 1.39
    H130 13.86 90.71 90.26 0.50
    H200 20.41 85.71 85.67 0.05
    下载: 导出CSV
  • [1] CHEN Y M, DAS R, BATTLEY M. Effects of cell size and cell wall thickness variations on the stiffness of closed-cell foams[J]. International Journal of Solids and Structures, 2015, 52: 150-164. doi: 10.1016/j.ijsolstr.2014.09.022
    [2] GIBSON L J, ASHBY M F. Cellular solids[M]. Cambridge: Cambridge University Press, 1997.
    [3] MILLS N J, ZHU H X. The high strain compression of closed-cell polymer foams[J]. Journal of the Mechanics and Physics of Solids, 1999, 47(3): 669-695. doi: 10.1016/S0022-5096(98)00007-6
    [4] WEAIRE D, PHELAN R. A counter-example to Kelvin's conjecture on minimal surfaces[J]. Philosophical Magazine Letters, 1994, 69(2): 107-110. doi: 10.1080/09500839408241577
    [5] WISMANS J G F, GOVAERT L E, VAN DOMMELEN J A W. X-ray computed tomography-based modeling of polymeric foams: The effect of finite element model size on the large strain response[J]. Journal of Polymer Science Part B: Polymer Physics, 2010, 48(13): 1526-1534. doi: 10.1002/polb.22055
    [6] VESENJAK M, VEYHL C, FIEDLER T. Analysis of anisotropy and strain rate sensitivity of open-cell metal foam[J]. Materials Science and Engineering: A, 2012, 541: 105-109. doi: 10.1016/j.msea.2012.02.010
    [7] SUN Y L, LOWE T, MCDONALD S A, et al. In situ investigation and image-based modelling of aluminium foam compression using micro X-ray computed tomography[M]//LETA F R. Visual computing. Belin: Springer, 2014: 189-197.
    [8] SUN Y L, LI Q M, LOWE T, et al. Investigation of strain-rate effect on the compressive behaviour of closed-cell aluminium foam by 3D image-based modelling[J]. Materials & Design, 2016, 89: 215-224.
    [9] KIM S H, CHUNG H J, RHEE K Y. Numerical analysis on the compressive behaviors of aluminum foam material using computed tomography imaging[J]. Advanced Materials Research, 2010, 123-125: 567-570.
    [10] JEON I, ASAHINA T, KANG K J, et al. Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography[J]. Mechanics of Materials, 2010, 42(3): 227-236. doi: 10.1016/j.mechmat.2010.01.003
    [11] HUANG R X, LI P F, LIU T. X-ray microtomography and finite element modelling of compressive failure mechanism in cenosphere epoxy syntactic foams[J]. Composite Structures, 2016, 140: 157-165. doi: 10.1016/j.compstruct.2015.12.040
    [12] DAPHALAPURKAR N P, HANAN J C, PHELPS N B, et al. Tomography and simulation of microstructure evolution of a closed-cell polymer foam in compression[J]. Mechanics of Advanced Materials and Structures, 2008, 15(8): 594-611. doi: 10.1080/15376490802470523
    [13] CATY O, MAIRE E, YOUSSEF S, et al. Modeling the properties of closed-cell cellular materials from tomography images using finite shell elements[J]. Acta Materialia, 2008, 56(19): 5524-5534. doi: 10.1016/j.actamat.2008.07.023
    [14] 李侯贞强, 张亚栋, 张锦华, 等. 基于CT的泡沫铝三维细观模型重建及应用[J]. 北京航空航天大学学报, 2018, 44(1): 160-168. doi: 10.13700/j.bh.1001-5965.2016.0959

    LI H Z Q, ZHANG Y D, ZHANG J H, et al. Reconstruction and application of three-dimensional mesoscopic model of aluminum foam based on CT[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(1): 160-168(in Chinese). doi: 10.13700/j.bh.1001-5965.2016.0959
    [15] LI K, GAO X L, SUBHASH G. Effects of cell shape and strut cross-sectional area variations on the elastic properties of three-dimensional open-cell foams[J]. Journal of the Mechanics and Physics of Solids, 2006, 54(4): 783-806. doi: 10.1016/j.jmps.2005.10.007
    [16] SONG Y Z, WANG Z H, ZHAO L M, et al. Dynamic crushing behavior of 3D closed-cell foams based on Voronoi random model[J]. Materials & Design, 2010, 31(9): 4281-4289.
    [17] ZHU H X, HOBDELL J R, WINDLE A H. Effects of cell irregularity on the elastic properties of open-cell foams[J]. Acta Materialia, 2000, 48(20): 4893-4900. doi: 10.1016/S1359-6454(00)00282-2
    [18] ZHU H X, WINDLE A H. Effects of cell irregularity on the high strain compression of open-cell foams[J]. Acta Materialia, 2002, 50(5): 1041-1052. doi: 10.1016/S1359-6454(01)00402-5
    [19] ZHU W Q, BLAL N, CUNSOLO S, et al. Effective elastic behavior of irregular closed-cell foams[J]. Materials, 2018, 11(11): 2100. doi: 10.3390/ma11112100
    [20] RIBEIRO-AYEH S. Finite element modelling of the mechanics of solid foam materials[D]. Karlstad: Karlstad University, 2005.
    [21] REDENBACH C, SHKLYAR I, ANDRÄ H. Laguerre tessellations for elastic stiffness simulations of closed foams with strongly varying cell sizes[J]. International Journal of Engineering Science, 2012, 50(1): 70-78. doi: 10.1016/j.ijengsci.2011.09.002
    [22] GHAZI A, BERKE P, KAMEL K E M, et al. Multiscale computational modelling of closed cell metallic foams with detailed microstructural morphological control[J]. International Journal of Engineering Science, 2019, 143: 92-114. doi: 10.1016/j.ijengsci.2019.06.012
    [23] MATZKE E B. The three-dimensional shape of bubbles in foam—An analysis of the rôle of surface forces in three-dimensional cell shape determination[J]. American Journal of Botany, 1946, 33(1): 58-80. doi: 10.1002/j.1537-2197.1946.tb10347.x
    [24] 李勇俊, 季顺迎. 基于球形颗粒几何排列的离散元试样高效生成方法[J]. 应用力学学报, 2020, 37(2): 469-476. https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202002001.htm

    LI Y J, JI S Y. Construction approach of DEM samples with high efficiency based on geometrical packing of spherical particles[J]. Chinese Journal of Applied Mechanics, 2020, 37(2): 469-476(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YYLX202002001.htm
    [25] VALERA R R, MORALES I P, VANMAERCKE S, et al. Modified algorithm for generating high volume fraction sphere packings[J]. Computational Particle Mechanics, 2015, 2(2): 161-172. doi: 10.1007/s40571-015-0045-8
    [26] RYCROFT C H. Voro+ +: A three-dimensional voronoi cell library in C+ +[J]. Chaos, 2009, 19(4): 041111. doi: 10.1063/1.3215722
    [27] LIU Y, RAHIMIDEHGOLAN F, ALTENHOF W. Anisotropic compressive behavior of rigid PVC foam at strain rates up to 200 s-1[J]. Polymer Testing, 2020, 91: 106836. doi: 10.1016/j.polymertesting.2020.106836
  • 加载中
图(15) / 表(1)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  13
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-31
  • 录用日期:  2021-03-07
  • 刊出日期:  2022-06-20

目录

    /

    返回文章
    返回
    常见问答