留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

磁悬浮转子状态反馈解耦自抗扰控制方法

尹增愿 蔡远文 任元 王卫杰 陈晓岑 于春淼

尹增愿, 蔡远文, 任元, 等 . 磁悬浮转子状态反馈解耦自抗扰控制方法[J]. 北京航空航天大学学报, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021
引用本文: 尹增愿, 蔡远文, 任元, 等 . 磁悬浮转子状态反馈解耦自抗扰控制方法[J]. 北京航空航天大学学报, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021
YIN Zengyuan, CAI Yuanwen, REN Yuan, et al. Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021(in Chinese)
Citation: YIN Zengyuan, CAI Yuanwen, REN Yuan, et al. Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(7): 1210-1221. doi: 10.13700/j.bh.1001-5965.2021.0021(in Chinese)

磁悬浮转子状态反馈解耦自抗扰控制方法

doi: 10.13700/j.bh.1001-5965.2021.0021
基金项目: 

国家自然科学基金 52075545

国家自然科学基金 11802342

北京市“高创计划”青年拔尖人才项目 2017000026833ZK23

详细信息
    通讯作者:

    任元, E-mail: renyuan_823@aliyun.com

  • 中图分类号: V448.2

Decoupled active disturbance rejection control method for magnetically suspended rotor based on state feedback

Funds: 

National Natural Science Foundation of China 52075545

National Natural Science Foundation of China 11802342

Beijing Youth Top-Notch Talent Support Program 2017000026833ZK23

More Information
  • 摘要:

    针对磁悬浮控制敏感陀螺(MSCSG)转子偏转通道强耦合及航天器姿态测量过程中受扰失稳问题,提出了一种磁悬浮转子偏转解耦抗干扰控制方法。分析了转子两自由度偏转耦合现象,设计了基于状态反馈的解耦控制器;建立了MSCSG在姿态测量过程中航天器的姿态运动对磁悬浮转子产生的干扰力矩模型,采用自抗扰控制器(ADRC)抑制磁悬浮转子的外部干扰;对所建立的扩展状态观测器(ESO)跟踪性和系统稳定性进行了分析,通过调节ADRC中非线性状态误差反馈控制律系数,实现了系统有界输入条件下的稳定。仿真结果表明:状态反馈解耦能够实现偏转自由度的完全解耦,ESO具有良好的跟踪性能,ADRC较传统PID控制方法具有更好的抗干扰性能。

     

  • 图 1  15 N·m·s磁悬浮控制敏感陀螺截面示意图

    Figure 1.  Section diagram of 15 N·m·s MSCSG

    图 2  洛伦兹力磁轴承结构示意图

    Figure 2.  Structure diagram of LFMB

    图 3  磁悬浮转子控制系统

    Figure 3.  Magnetically suspended rotor control system

    图 4  解耦之后的磁悬浮转子控制系统

    Figure 4.  Decoupled magnetically suspended rotor control system

    图 5  自抗扰控制器控制框图

    Figure 5.  Control block diagram of ADRC

    图 6  ESO对阶跃输入的观测效果

    Figure 6.  Observation of step input by ESO

    图 7  ESO对正弦输入的观测效果

    Figure 7.  Observation of sinusoidal input by ESO

    图 8  阶跃信号输入解耦性能对比

    Figure 8.  Comparison of decoupling performance of step signal input

    图 9  正弦信号输入解耦性能对比

    Figure 9.  Comparison of decoupling performance of sinusoidal signal input

    图 10  响应速度对比仿真结果

    Figure 10.  Simulation results of response speed

    图 11  抗干扰性能对比仿真结果

    Figure 11.  Comparison of simulation results of anti-interference performance

    图 12  解耦不充分情况下的抗干扰性能

    Figure 12.  Anti-interference performance under the condition of insufficient decoupling

    表  1  MSCSG系统参数

    Table  1.   MSCSG system parameters

    参数 数值
    JxJy/(kg·m2) 0.009 7
    Jz/(kg·m2) 0.028 7
    Ω/(r·min-1) 5 000
    kT/(N·m·A-1) 2.8
    下载: 导出CSV

    表  2  控制系统参数

    Table  2.   parameters of the control system

    参数 数值
    (σ1, σ2) (490, 122)
    b0 1
    h 0.01
    λ 1
    (β1, β2, β3) (14, 8 000, 100)
    r 0.05
    γ 0.1
    下载: 导出CSV
  • [1] SUN L, ZHENG Z. Disturbance observer-based robust back-stepping attitude stabilization of spacecraft under input saturation and measurement uncertainty[J]. IEEE Transactions on Industrial Electronics, 2017, 64(10): 7994-8002. doi: 10.1109/TIE.2017.2694349
    [2] SUN L, HUO W, JIAO Z. Adaptive backstepping control of spacecraft rendezvous and proximity operations with input saturation and full-state constraint[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1): 480-492. doi: 10.1109/TIE.2016.2609399
    [3] XU S, CUI N, FAN Y, et al. Active vibration suppression of flexible spacecraft during attitude maneuver with actuator dynamics[J]. IEEE Access, 2018, 6: 35327-35337. doi: 10.1109/ACCESS.2018.2851665
    [4] LIN Z, LIN S, WU S, et al. Vibration control of a flexible spacecraft system with input backlash[J]. IEEE Access, 2019, 7: 87017-87026. doi: 10.1109/ACCESS.2019.2926516
    [5] SI H, SHAO X, ZHANG W. MLP-based neural guaranteed performance control for MEMS gyroscope with logarithmic quantizer[J]. IEEE Access, 2020, 8: 38596-38605. doi: 10.1109/ACCESS.2020.2974526
    [6] REN Y, CHEN X, CAI Y, et al. Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes[J]. IEEE Transactions on Industrial Electronics, 2018, 65(6): 4921-4932. doi: 10.1109/TIE.2017.2772161
    [7] XU G F, CAI Y W, REN Y, et al. Application of a new Lorentz force-type tilting control magnetic bearing in a magnetically suspended control sensitive gyroscope with cross-sliding mode control[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2018, 61(1): 40-47. doi: 10.2322/tjsass.61.40
    [8] 夏长峰, 蔡远文, 任元, 等. MSCSG转子系统的扩展双频Bode图稳定性分析方法[J]. 宇航学报, 2018, 39(2): 168-176. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201802008.htm

    XIA C F, CAI Y W, REN Y, et al. Extended dual-frequency Bode diagram stability analysis method for MSCSG rotor system[J]. Journal of Astronautics, 2018, 39(2): 168-176(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201802008.htm
    [9] FANG J, REN Y, FAN Y. Nutation and precession stability criterion of magnetically suspended rigid rotors with gyroscopic effects based on positive and negative frequency characteristics[J]. IEEE Transactions on Industrial Electronics, 2014, 61(4): 2003-2014. doi: 10.1109/TIE.2013.2266077
    [10] REN Y, SU D, FANG J. Whirling modes stability criterion for a magnetically suspended flywheel rotor with significant gyroscopic effects and bending modes[J]. IEEE Transactions on Power Electronics, 2013, 28(12): 5890-5901. doi: 10.1109/TPEL.2013.2253126
    [11] FANG J C, REN Y. Decoupling control of magnetically suspended rotor system in control moment gyros based on an inverse system method[J]. IEEE/ASME Transactions on Mechatronics, 2012, 17(6): 1133-1144. doi: 10.1109/TMECH.2011.2159618
    [12] REN Y, FANG J C. High-stability and fast-response twisting motion control for the magnetically suspended rotor system in a control moment gyro[J]. IEEE/ASME Transactions on Mechatronics, 2013, 18(5): 1625-1634. doi: 10.1109/TMECH.2012.2211376
    [13] AHRENS M, KUCERA L, LARSONNEUR R. Performance of a magnetically suspended flywheel energy storage device[J]. IEEE Transactions on Control Systems Technology, 1996, 4(5): 494-502. doi: 10.1109/87.531916
    [14] FAN Y, FANG J. Experimental research on the nutational stability of magnetically suspended momentum flywheel in control moment gyroscope (CMG)[C]//Proceedings of 9th International Symposium on Magnetic Bearings, 2004: 116-121.
    [15] HUNG J Y. Magnetic bearing control using fuzzy logic[J]. IEEE Transactions on Industry Applications, 1995, 31(6): 1492-1497. doi: 10.1109/28.475746
    [16] SOBHAN P V S, KUMAR G V N, AMARNATH J. Rotor levitation by active magnetic bearings using fuzzy logic controller[C]//2010 International Conference on Industrial Electronics, Control and Robotics. Piscataway: IEEE Press, 2010: 27-29.
    [17] BENOMAIR A M, BASHIR F A, TOKHI M O. Optimal control based LQR-feedback linearisation for magnetic levitation using improved spiral dynamic algorithm[C]//201520th International Conference on Methods and Models in Automation and Robotics (MMAR). Piscataway: IEEE Press, 2015: 24-27.
    [18] ZHANG Y C, SUN G J, ZHANG Y J. Experimental verification for zero power control of 0.5 kWh class flywheel system using magnetic bearing with gyroscopic effect[C]//Proceedings of International Conference on Machine Learning and Cybernetics. Piscataway: IEEE Press, 2002: 4-5.
    [19] REN Y, FANG J. High-precision and strong-robustness control for an MSCMG based on modal separation and rotation motion decoupling strategy[J]. IEEE Transactions on Industrial Electronics, 2014, 61(3): 1539-1551. doi: 10.1109/TIE.2013.2257147
    [20] XIE J J, LIU G, WEN T. Composite compensation for load torque of active magnetic bearing in DGMSCMG[J]. Optical and Precision Engineering, 2015, 23(8): 2211-2219. doi: 10.3788/OPE.20152308.2211
    [21] KANG M S, LYOU J, LEE J K. Sliding mode control for an active magnetic bearing system subject to base motion[J]. Mechatronics, 2010, 20(1): 171-178. doi: 10.1016/j.mechatronics.2009.09.010
    [22] 刘强, 赵勇, 代峰燕, 等. 磁悬浮陀螺飞轮用隐式洛伦兹力磁轴承[J]. 光学精密工程, 2018, 26(2): 399-409. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201802019.htm

    LIU Q, ZHAO Y, DAI F Y, et al. Implicit Lorentz force magnetic bearing for magnetically suspended gyro flywheel[J]. Optics and Precision Engineering, 2018, 26(2): 399-409(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201802019.htm
    [23] 夏长峰, 蔡远文, 任元, 等. 磁悬浮控制敏感陀螺转子前馈解耦内模控制[J]. 北京航空航天大学学报, 2018, 44(3): 480-488. doi: 10.13700/j.bh.1001-5965.2017.0190

    XIA C F, CAI Y W, REN Y, et al. Feedforward decoupling and internal model control for rotor of magnetically suspended control and sensing gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3): 480-488(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0190
    [24] BASARAN S, SIVRIOGLU S. Novel repulsive magnetic bearing flywheel system with composite adaptive control[J]. IET Electric Power Applications, 2019, 13(5): 676-685.
    [25] HAN J. From PID to active disturbance rejection control[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 900-906.
    [26] 尹增愿, 蔡远文, 王卫杰, 等. 一种组合磁钢叠加磁场洛伦兹力磁轴承设计方法[J]. 宇航学报, 2018, 39(7): 56-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201807007.htm

    YIN Z Y, CAI Y W, WANG W J, et al. A Lorentz force magnetic bearing design method with composite magnetic steel and superimposed magnetic field[J]. Journal of Aerospace, 2018, 39(7): 56-64(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YHXB201807007.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  34
  • HTML全文浏览量:  13
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-14
  • 录用日期:  2021-03-28
  • 刊出日期:  2021-04-19

目录

    /

    返回文章
    返回
    常见问答