留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不确定初始几何缺陷杆动态屈曲失效分析

王晓军 王磊 马丽红 邱志平

王晓军, 王磊, 马丽红, 等 . 不确定初始几何缺陷杆动态屈曲失效分析[J]. 北京航空航天大学学报, 2011, 37(12): 1484-1489,1509.
引用本文: 王晓军, 王磊, 马丽红, 等 . 不确定初始几何缺陷杆动态屈曲失效分析[J]. 北京航空航天大学学报, 2011, 37(12): 1484-1489,1509.
Wang Xiaojun, Wang Lei, Ma Lihong, et al. Dynamic buckling failure analysis of rod with uncertain initial geometrical imperfection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1484-1489,1509. (in Chinese)
Citation: Wang Xiaojun, Wang Lei, Ma Lihong, et al. Dynamic buckling failure analysis of rod with uncertain initial geometrical imperfection[J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(12): 1484-1489,1509. (in Chinese)

不确定初始几何缺陷杆动态屈曲失效分析

基金项目: 国家自然科学基金资助项目(11002013); 高等学校学科创新引智计划项目(B07009); 国防基础科研计划资助项目(A2120110001)
详细信息
    作者简介:

    王晓军(1978-),男,陕西岐山人,副教授,XJWang@buaa.edu.cn.

  • 中图分类号: O 344.1

Dynamic buckling failure analysis of rod with uncertain initial geometrical imperfection

  • 摘要: 由初始几何缺陷所引起的结构屈曲载荷降低最高可达70%.由于制造误差等原因使得结构初始几何缺陷往往具有不确定性,而这种不确定性又必然会导致结构屈曲荷载与动态屈曲响应的不确定性.研究了动载作用下含有不确定初始几何缺陷杆的动态屈曲失效问题.基于积分挠度定义了动态屈曲安全因子.采用区间分析方法和凸模型方法,给出了具有不确定初始几何缺陷杆的基于积分位移的动态屈曲安全因子的最不利估计,其结果为判断具有不确定初始几何缺陷杆结构的动态屈曲失效分析提供了重要依据.

     

  • [1] 王璠,刘人怀.复合材料层合开顶扁球壳的非线性动态屈曲[J].固体力学学报,2001,22(3):309-314 Wang Pan,Liu Renhuai.Nonlinear dynamic buckling of symmetrically laminated truncated spherical shell[J].Acta Solid Mechnica,2001,22(3):309-314(in Chinese) [2] Ben-Haim Y,Elishakoff I.Convex models of unvertainty in applied mechanics[M].Amsterdam:Elsevier Science Publishers,1990 [3] Lindberg H E.Impact buckling of a thin bar[J].Journal of Applied Mechanics,1965,32(2):312-322 [4] Elishakoff I.Impact buckling of thin bar via Monte Carlo method[J].Journal of Applied Mechanics,1978,45(3):586-590 [5] Malyshev V M.Stability of columns under impact compression[J].Mech Solids,1966,1(4):86-89 [6] Koning C,Taub J.Impact buckling of thin bars in the elastic range hinged at both ends[R].NACA TM 748,1934 [7] Elishakoff I.Axial impact buckling of a column with random initial imperfections[J].Journal of Applied Mechanics,1978,45(2):361-365 [8] Lindberg H E.Dynamic response and buckling failure measures for structures with bounded and random imperfections[J].ASME Journal of Applied Mechanics,1991,58(4):1092-1095 [9] Qiu Z P,Elishakoff I.Antioptimization of structures with large uncertain-but-non-random parameters via interval analysis[J].Computer Methods in Applied Mechanics and Engineering,1998,152(3/4):361-372 [10] Qiu Z P,Müller P C,Frommer A.Stability robustness bounds for linear state-space models with structured uncertainty based on ellipsoidal set-theoretic approach[J].Mathematics and Computers in Simulation,2001,56(1):35-53 [11] Qiu Z P,Wang X J.Structural anti-optimization with interval design parameters[J].Structural and Multidisciplinary Optimization,2010,41(3),397-406 [12] Wang X J,Yang H F,Qiu Z P.Interval analysis method for damage identification of structures[J].AIAA Journal,2010,48(6):1108-1116 [13] Rao S S,Berke L.Analysis of uncertain structural systems using interval analysis[J].AIAA Journal,2007,35(4):727-735 [14] Hoff H J.Dynamic stability of structures[M].New York:Pergamon,1965
  • 加载中
计量
  • 文章访问数:  2295
  • HTML全文浏览量:  20
  • PDF下载量:  687
  • 被引次数: 0
出版历程
  • 收稿日期:  2010-06-25
  • 刊出日期:  2012-12-30

目录

    /

    返回文章
    返回
    常见问答