留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于轨迹线性化控制的再入轨迹跟踪制导

沈作军 朱国栋

沈作军, 朱国栋. 基于轨迹线性化控制的再入轨迹跟踪制导[J]. 北京航空航天大学学报, 2015, 41(11): 1975-1982. doi: 10.13700/j.bh.1001-5965.2014.0424
引用本文: 沈作军, 朱国栋. 基于轨迹线性化控制的再入轨迹跟踪制导[J]. 北京航空航天大学学报, 2015, 41(11): 1975-1982. doi: 10.13700/j.bh.1001-5965.2014.0424
SHEN Zuojun, ZHU Guodong. Trajectory linearization control based tracking guidance design for entry flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1975-1982. doi: 10.13700/j.bh.1001-5965.2014.0424(in Chinese)
Citation: SHEN Zuojun, ZHU Guodong. Trajectory linearization control based tracking guidance design for entry flight[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(11): 1975-1982. doi: 10.13700/j.bh.1001-5965.2014.0424(in Chinese)

基于轨迹线性化控制的再入轨迹跟踪制导

doi: 10.13700/j.bh.1001-5965.2014.0424
基金项目: 中央高校基本科研业务费专项资金(YWF-14-HKXY-011)
详细信息
    通讯作者:

    沈作军(1968-),男,湖北荆州人,教授,shenzuojun@buaa.edu.cn,主要研究方向为制导技术与飞行控制、轨迹优化.

  • 中图分类号: V448.235

Trajectory linearization control based tracking guidance design for entry flight

  • 摘要: 针对高超声速飞行器再入制导问题,提出了一种基于轨迹线性化控制(TLC)方法的轨迹跟踪制导律.利用再入飞行器动力学固有时间尺度分离的特点,通过外环路和内环路的设计分别对高度和速度进行控制.轨迹倾角被用作外环路的虚拟控制量来控制高度;倾侧角和迎角用于在内环路跟踪轨迹倾角指令和速度.在反馈回路通过设计线性时变控制器对误差动态进行镇定.反馈增益可在线计算并能符号化地表示为参考轨迹的函数,从而避免了增益插值调度和可能需要的模式切换.大量仿真结果表明:TLC可以实现轨迹的精确跟踪且控制参数对不同参考轨迹的依赖性很小;TLC与基于轨迹在线生成的制导方法的结合可以显著提高再入制导的自主性和适应性.

     

  • [1] Lu P.Entry guidance:A unified method[J].Journal of Guidance, Control, and Dynamics, 2014, 37(3):713-728.
    [2] Harpold J C, Graves C A Jr.Shuttle entry guidance[J].Journal of Astronautical Sciences, 1979, 27(3):239-268.
    [3] Shen Z J, Lu P.Onboard generation of three-dimensional constrained entry trajectories[J].Journal of Guidance, Control, and Dynamics, 2003, 26(1):111-121.
    [4] Roenneke A J.Adaptive on-board guidance for entry vehicles[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston:AIAA Inc., 2001:1-10.
    [5] Saraf A, Leavitt J A, Chen D T, et al.Design and evaluation of an acceleration guidance algorithm for entry[J].Journal of Spacecraft and Rockets, 2004, 41(6):986-996.
    [6] Bharadwaj S, Rao A V, Mease K D.Entry trajectory tracking law via feedback linearization[J].Journal of Guidance, Control, and Dynamics, 1998, 21(5):726-732.
    [7] Dukeman G A.Profile-following entry guidance using linear quadratic regulator theory[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston:AIAA Inc., 2002:1-10.
    [8] Lu P.Regulation about time-varying trajectories:Precision entry guidance illustrated[J].Journal of Guidance, Control, and Dynamics, 1999, 22(6):784-790.
    [9] Zhu J, Banker B D, Hall C E.X-33 ascent flight controller design by trajectory linearization-a singular perturbation approach[C]//AIAA Guidance, Navigation, and Control Conference and Exhibit.Reston:AIAA Inc., 2000:1-19.
    [10] Vinh N X, Busemann A, Culp R D.Hypersonic and planetary entry flight mechanics[M].MI, Ann Arbor:University of Michigan Press, 1980:26-27.
    [11] Phillips T H.A common aero vehicle(CAV)model, description, and employment guide[R].[S.l.]:Schafer Corporation for AFRL and AFSPC, 2003.
    [12] Zhu J.Nonlinear tracking and decoupling by trajectory linearization[Z].Lecture Note, Presented at NASA Marshall Space Flight Center.
    [13] Naidu D S, Calise A J.Singular perturbations and time scales in guidance and control of aerospace systems:A survey[J].Journal of Guidance, Control, and Dynamics, 2001, 24(6):1057-1078.
    [14] Mease K D.Multiple time-scales in nonlinear flight mechanics:Diagnosis and modeling[J].Applied Mathematics and Computation, 2005, 164(2):627-648.
    [15] Lu P, Shen Z J.Unifying treatment to control of nonlinear systems with two timescales[J].Journal of Guidance, Control, and Dynamics, 2002, 25(5):975-979.
  • 加载中
计量
  • 文章访问数:  798
  • HTML全文浏览量:  4
  • PDF下载量:  1005
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-07-17
  • 修回日期:  2014-10-17
  • 刊出日期:  2015-11-20

目录

    /

    返回文章
    返回
    常见问答