留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞翼布局飞行器等离子体激励滚转操控试验

姚军锴 何海波 周丹杰 何承军 史志伟 杜海

姚军锴, 何海波, 周丹杰, 等 . 飞翼布局飞行器等离子体激励滚转操控试验[J]. 北京航空航天大学学报, 2017, 43(4): 701-708. doi: 10.13700/j.bh.1001-5965.2016.0309
引用本文: 姚军锴, 何海波, 周丹杰, 等 . 飞翼布局飞行器等离子体激励滚转操控试验[J]. 北京航空航天大学学报, 2017, 43(4): 701-708. doi: 10.13700/j.bh.1001-5965.2016.0309
YAO Junkai, HE Haibo, ZHOU Danjie, et al. Tests of flying wing aircraft roll control using plasma actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 701-708. doi: 10.13700/j.bh.1001-5965.2016.0309(in Chinese)
Citation: YAO Junkai, HE Haibo, ZHOU Danjie, et al. Tests of flying wing aircraft roll control using plasma actuator[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(4): 701-708. doi: 10.13700/j.bh.1001-5965.2016.0309(in Chinese)

飞翼布局飞行器等离子体激励滚转操控试验

doi: 10.13700/j.bh.1001-5965.2016.0309
详细信息
    作者简介:

    姚军锴, 男, 硕士研究生, 工程师。主要研究方向:飞行器气动布局设计

    通讯作者:

    姚军锴, E-mail:yjk1031@163.com

  • 中图分类号: V211.7

Tests of flying wing aircraft roll control using plasma actuator

More Information
  • 摘要:

    飞翼布局飞行器采用多个气动舵面共同作用来控制飞行,常规气动舵面的结构复杂,在大迎角时由于流动分离,舵面操纵效率显著降低。等离子体激励器具有结构简单、重量轻和响应快等优势,常被用在流动控制上。本文利用激励器抑制单侧翼面流动分离产生不对称的气动力,对飞翼布局飞行器滚转通道的控制进行了试验研究,得出了激励器在飞行器上的最优布置位置和最佳控制参数,并和常规副翼舵面滚转操控效果进行了对比。结果表明:布置于内翼、中翼前缘的等离子体激励器能够获得最佳的滚转控制效果;激励器调制频率对飞行器滚转控制效果的影响较大,而激励电压对滚转控制效果的影响较小;与常规副翼相比,等离子体激励器在大迎角时对滚转通道的操控效果优于副翼。

     

  • 图 1  飞翼布局飞行器模型

    Figure 1.  Flying wing aircraft model

    图 2  等离子激励器编号

    Figure 2.  Plasma actuator number

    图 3  D布置方式激励器编号

    Figure 3.  Plasma actuator number corresponding to arrangement position D

    图 4  A布置方式滚转力矩系数增量随迎角变化

    Figure 4.  Variation of rolling moment coefficient increment with angle of attack corresponding to arrangement position A

    图 5  B、C布置方式滚转力矩系数增量随迎角变化

    Figure 5.  Variation of rolling moment coefficient increment with angle of attack corresponding to arrangement position B and C

    图 6  AC布置方式滚转力矩系数增量随迎角变化

    `

    Figure 6.  Variation of rolling moment coefficient increment with angle of attack corresponding to arrangement position AC

    图 7  D布置方式滚转力矩系数增量随迎角变化

    Figure 7.  Variation of rolling moment coefficient increment with angle of attack corresponding to arrangement position D

    图 8  不同调制频率滚转力矩系数增量随迎角变化

    Figure 8.  Variation of rolling moment coefficient increment with angle of attack corresponding to different modulation frequencies

    图 9  不同激励电压滚转力矩系数增量随迎角变化

    Figure 9.  Variation of rolling moment coefficient increment with angle of attack corresponding to different excitation voltage

    图 10  不同占空比滚转力矩系数增量随迎角变化

    Figure 10.  Variation of rolling moment coefficient increment with angle of attack corresponding to different duty cycles

    图 11  激励器与副翼不同舵偏的滚转力矩系数增量随迎角变化

    Figure 11.  Variation of rolling moment coefficient increment caused by plasma actuator and aileron deflection with angle of attack

    图 12  激励器与副翼不同舵偏的升力系数、阻力系数、俯仰力矩系数、侧向力系数及偏航力矩系数增量随迎角变化曲线

    Figure 12.  Variation of lift coefficient, drag coefficient, pitch moment coefficient, lateral force coefficient and yaw moment coefficient increments caused by plasma actuator and aileron deflection with angle of attack

    表  1  天平量程和校准精度

    Table  1.   Measuring range and calibration accuracy of force balance

    参数 X/kg Y/kg Z/kg Mx/
    (kg·m)
    My/
    (kg·m)
    Mz/
    (kg·m)
    天平量程 1.6 6.0 2.2 0.21 0.14 0.38
    校准精度/% 0.08 0.03 0.06 0.02 0.01 0.08
    注:X—轴向力;Y—法向力;Z—侧向力;Mx—滚转力矩;My—偏航力矩;Mz—俯仰力矩。
    下载: 导出CSV

    表  2  不同布置位置对应的等离子激励器编号

    Table  2.   Plasma actuator number corresponding to different arrangement positions

    激励器编号
    A0 0
    A1 5
    A2 10
    A3 15
    B0 5
    B1 10
    B2 20
    B3 40
    B4 50
    C0 0
    C1 5
    C2 10
    下载: 导出CSV
  • [1] BOWLUS J A, MULTHOPP D, BANDA S S.Challenges and opportunities in tailless aircraft stability and control:AIAA-97-3830[R].Reston:AIAA, 1997:1713-1718.
    [2] 李林, 马超, 王立新.小展弦比飞翼布局飞机稳定特性[J].航空学报, 2007, 28(6):1312-1317. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200706008.htm

    LI L, MA C, WANG L X.Stability features of low aspect-ratio flying wings[J].Acta Aeronautica et Astronautica Sinica, 2007, 28(6):1312-1317(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200706008.htm
    [3] MOELLER E B, REDINIOTIS O K.Hingeless flow control over a Delta-wing planform[J].Journal of Aircraft, 2002, 39(6):1035-1044. doi: 10.2514/2.3032
    [4] TRAUB L W, GILARRANZ J L, REDINIOTIS O K.Delta wing hingeless control via synthetic jet actuation[C]//40th AIAA Aerospace Sciences Meeting and Exhibit.Reston:AIAA, 2002:1-10.
    [5] 孔轶男, 黄建栋, 王立新, 等.涡流控制在小展弦比飞翼布局飞机上的应用研究[J].空气动力学学报, 2008, 26(4):435-439. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200804004.htm

    KONG Y N, HUANG J D, WANG L X, et al.Vortex control in low aspect ratio flying wing[J].Acta Aerodynamica Sinica, 2008, 26(4):435-439(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200804004.htm
    [6] CORKE T C, POST M L.Overview of plasma actuators:Concepts, optimization, and applications:AIAA-2005-563[R].Reston:AIAA, 2005.
    [7] CORKE T C, ENLOE C L, WILKINSON S P.Dielectric barrier discharge plasma actuators for flow control[J].Annual Review of Fluid Mechanics, 2010, 42:505-529. doi: 10.1146/annurev-fluid-121108-145550
    [8] ROUPASSOV D V, ZAVYALOV I N, STARIKOVSKⅡ A Y, et al.Boundary layer separation plasma control using low-temperature non-equilibrium plasma of gas discharge[C]//44th AIAA Aerospace Sciences Meeting and Exhibit.Reston:AIAA, 2006:1-7.
    [9] POST M L, CORKE T C.Separation control on high angle of attack airfoil using plasma actuators[J].AIAA Journal, 2004, 42(11):2177-2184. doi: 10.2514/1.2929
    [10] PATEL M P, NG T T, VASUDEVAN S, et al.Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle[J].Journal of Aircraft, 2007, 44(4):1264-1273. doi: 10.2514/1.25368
    [11] HE C, CORKE T C, PATEL M P.Plasma flaps and slats:An application of weakly ionized plasma actuators[J].Journal of Aircraft, 2009, 46(3):864-873. doi: 10.2514/1.38232
    [12] NELSON R C, CORKE T C, HE C A, et al.Modification of the flow structure over a UAV wing for roll control:AIAA-2007-884[R].Reston:AIAA, 2007.
    [13] 杜海, 史志伟, 倪芳原, 等.基于等离子体激励的飞翼布局飞行器气动力矩控制[J].航空学报, 2013, 34(9):2038-2046. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201309004.htm

    DU H, SHI Z W, NI F Y, et al.Aerodynamic moment control of flying wing vehicle using plasma actuators[J].Acta Aeronautica et Astronautica Sinica, 2013, 34(9):2038-2046(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201309004.htm
    [14] 杜海, 史志伟, 耿玺, 等.等离子体激励器对微型飞行器横航向气动力矩控制的实验研究[J].航空学报, 2012, 33(10):1781-1790. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201210005.htm

    DU H, SHI Z W, GENG X, et al.Experimental study of directional-lateral aerodynamic moment control of micro air vehicle by plasma actuators[J].Acta Aeronautica et Astronautica Sinica, 2012, 33(10):1781-1790(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201210005.htm
    [15] 王万波, 章荣平, 黄宗波, 等.等离子体激励用于2段翼型增升的试验研究[J].空气动力学学报, 2012, 30(1):64-68. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301012.htm

    WANG W B, ZHANG R P, HUANG Z B, et al.Test research of two-element airfoil lift enhancement by plasma actuator[J].Acta Aerodynamica Sinica, 2012, 30(1):64-68(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX201301012.htm
    [16] 李应红, 吴云, 张朴.等离子体激励抑制翼型失速分离的实验研究[J].空气动力学学报, 2008, 26(3):372-377. http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200803018.htm

    LI Y H, WU Y, ZHANG P.Experimental investigation on airfoil stall separation suppression by plasma actuation[J].Acta Aerodynamica Sinica, 2008, 26(3):372-377(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-KQDX200803018.htm
    [17] 王万波, 黄勇, 黄宗波, 等.介质阻挡放电等离子体对NACA0015翼型流动控制的PIV实验研究[J].实验流体力学, 2012, 26(2):1-5. http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201202001.htm

    WANG W B, HUANG Y, HUANG Z B, et al.PIV measurement of dielectric barrier discharge plasma flow control on NACA0015 airfoil[J].Journal of Experiments in Fluid Mechanics, 2012, 26(2):1-5(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-LTLC201202001.htm
    [18] 李应红, 梁华, 马清源, 等.脉冲等离子体气动激励抑制翼型吸力面流动分离的实验[J].航空学报, 2008, 29(6):1429-1435. http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200806005.htm

    LI Y H, LIANG H, MA Q Y, et al.Experimental investigation on airfoil suction side flow separation by pulse plasma aerodynamic actuation[J].Acta Aeronautica et Astronautica Sinica, 2008, 29(6):1429-1435(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKXB200806005.htm
    [19] 赵勤, 吴云, 李应红, 等.端壁等离子体气动激励抑制高负荷压气机叶栅角区流动分离实验[J].航空动力学报, 2013, 28(9):2129-2138. http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201309031.htm

    ZHAO Q, WU Y, LI Y H, et al.Experiment of flow separation control in highly loaded compressor cascade corner by endwall plasma aerodynamic actuation[J].Journal of Aerospace Power, 2013, 28(9):2129-2138(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201309031.htm
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  543
  • HTML全文浏览量:  0
  • PDF下载量:  488
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-04-18
  • 录用日期:  2016-05-13
  • 刊出日期:  2017-04-20

目录

    /

    返回文章
    返回
    常见问答