留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于IFS和IPSO算法的干扰资源分配方法

吴华 史忠亚 沈文迪 陈游 程嗣怡

吴华, 史忠亚, 沈文迪, 等 . 基于IFS和IPSO算法的干扰资源分配方法[J]. 北京航空航天大学学报, 2017, 43(12): 2370-2376. doi: 10.13700/j.bh.1001-5965.2016.0870
引用本文: 吴华, 史忠亚, 沈文迪, 等 . 基于IFS和IPSO算法的干扰资源分配方法[J]. 北京航空航天大学学报, 2017, 43(12): 2370-2376. doi: 10.13700/j.bh.1001-5965.2016.0870
WU Hua, SHI Zhongya, SHEN Wendi, et al. Distribution method of jamming resource based on IFS and IPSO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2370-2376. doi: 10.13700/j.bh.1001-5965.2016.0870(in Chinese)
Citation: WU Hua, SHI Zhongya, SHEN Wendi, et al. Distribution method of jamming resource based on IFS and IPSO algorithm[J]. Journal of Beijing University of Aeronautics and Astronautics, 2017, 43(12): 2370-2376. doi: 10.13700/j.bh.1001-5965.2016.0870(in Chinese)

基于IFS和IPSO算法的干扰资源分配方法

doi: 10.13700/j.bh.1001-5965.2016.0870
基金项目: 

国家自然科学基金 61379104

航空科学基金 20152096019

详细信息
    作者简介:

    吴华 女, 硕士, 副教授。主要研究方向:雷达辐射源识别、电子对抗理论与技术

    史忠亚 男, 硕士研究生。主要研究方向:电子对抗理论与应用

    通讯作者:

    吴华, E-mail: 1131180441@qq.com

  • 中图分类号: TN974

Distribution method of jamming resource based on IFS and IPSO algorithm

Funds: 

National Natural Science Foundation of China 61379104

Aeronautical Science Foundation of China 20152096019

More Information
  • 摘要:

    针对多干扰系统同时干扰多部雷达的干扰资源分配问题,提出一种基于直觉模糊集(IFS)和改进粒子群优化(IPSO)算法相结合的干扰资源分配方法。利用己方无源探测系统获得的敌方雷达参数,根据IFS理论得到敌方雷达的威胁系数;整合数据库中战场的己方干扰系统与敌方雷达系统信息,从空域、频域、极化方式和干扰样式4个方面定义了匹配度,表示己方干扰系统对敌方雷达系统的干扰效率,得到匹配度矩阵,结合敌方雷达威胁系数建立干扰目标函数;提出一种自适应调整权重、异步变化学习因子、针对离散问题的IPSO算法,并引入补偿粒子进行盲区搜索,求解出最佳干扰决策。仿真表明,本文提出的干扰资源分配方法相较于传统算法最优解正确率更高,且实时性更好。

     

  • 图 1  空战图

    Figure 1.  Air battle picture

    图 2  资源分配框架

    Figure 2.  Resource distribution frame

    图 3  IPSO算法流程图

    Figure 3.  IPSO algorithm flowchart

    图 4  最优解正确率对比

    Figure 4.  Comparison of accuracy of best solution

    图 5  运算时间对比

    Figure 5.  Comparison of computation time

    图 6  干扰增益值变化情况

    Figure 6.  Jamming benefit changing situation

    表  1  雷达仿真参数

    Table  1.   Radar parameters for simulation

    编号 速度/
    Ma
    距离/
    km
    载频/
    GHz
    脉宽/
    μs
    俯仰角/
    (°)
    方位角/
    (°)
    频率宽度/
    GHz
    1 2.1 55 14 0.5 3.8 0.5 2.1
    2 1.7 109 11 1.5 0.5 25 2.6
    3 1.3 155 1.9 0.7 15 -18 0.1
    4 1.5 136 3.5 5 20.5 18.5 0.7
    5 0.9 164 13 0.8 15.8 32 2.1
    6 0.8 180 3.5 2.1 -25.8 -40 1.1
    下载: 导出CSV

    表  2  干扰机仿真参数

    Table  2.   Jamming system parameters for simulation

    编号 俯仰角/(°) 方位角/(°) 中心频率/GHz 频率宽度/GHz
    波束中心 波束宽度 波束中心 波束宽度
    1 3.1 2 3.5 1.1 10.8 2.1
    2 0.1 0.2 0.9 0.1 9.3 1.7
    3 14.7 3.8 14.3 2 1.1 0.2
    4 19.4 5.1 20 3.1 2.5 0.4
    5 16.3 2.4 36 5.2 10 2.1
    6 -27 3.2 -42 1.8 3.3 1.1
    7 15.3 2.9 -37 2.4 11.1 2.3
    8 1.8 0.7 23 4 3.2 1.1
    下载: 导出CSV
  • [1] 宋海方, 吴华, 程嗣怡, 等.多波束干扰系统干扰资源综合管理算法[J].兵工学报, 2013, 34(3):332-338. http://www.cqvip.com/QK/94928X/201303/45496225.html

    SONG H F, WU H, CHEN S Y, et al.Integrated management algorithm of jamming resources in multi-beam jamming systems[J].Acta Armamentarii, 2013, 34(3):332-338(in Chinese). http://www.cqvip.com/QK/94928X/201303/45496225.html
    [2] 李先茂, 董天临, 黄高明.基于零和竞争理论的雷达干扰功率分配方法[J].四川大学学报(工程科学版), 2016, 48(3):129-135. http://www.cqvip.com/QK/90462B/201603/668855379.html

    LI X M, DONG T L, HUANG G M.Distribution method of jamming power to radar net based on two-person zero-sum game[J].Journal of Sichuan University(Engineering Science Edition), 2016, 48(3):129-135(in Chinese). http://www.cqvip.com/QK/90462B/201603/668855379.html
    [3] 万开方, 高晓光, 刘宇.基于变效能因子的Lanchester协同干扰最优功率分配[J].系统工程与电子技术, 2011, 33(7):1544-1548.

    WAN K F, GAO X G, LIU Y.Optimal power partitioning for cooperative electronic jamming based on Lanchester with variable efficiency factors[J].Systems Engineering and Electronics, 2011, 33(7):1544-1548(in Chinese).
    [4] 刘以安, 倪天权, 张秀辉, 等.模拟退火算法在雷达干扰资源优化分配中的应用[J].系统工程与电子技术, 2009, 31(8):1914-1917. doi: 10.3321/j.issn:1001-506X.2009.08.030

    LIU Y A, NI T Q, ZHANG X H, et al.Application of simulated annealing algorithm in optimizing allocation of radar jamming resources[J].Systems Engineering and Electronic, 2009, 31(8):1914-1917(in Chinese). doi: 10.3321/j.issn:1001-506X.2009.08.030
    [5] 吕永胜, 王树宗, 王向伟, 等.基于贴近度的雷达干扰资源分配策略研究[J].系统工程与电子技术, 2005, 27(11):1893-1894. doi: 10.3321/j.issn:1001-506X.2005.11.022

    LU Y S, WANG S Z, WANG X W, et al.Study on the allocation tactics for radar jamming resources based on close degree[J].Systems Engineering and Electronic, 2005, 27(11):1893-1894(in Chinese). doi: 10.3321/j.issn:1001-506X.2005.11.022
    [6] 高晓光, 胡明, 郑景嵩.突防任务中的单机对多目标干扰决策[J].系统工程与电子技术, 2010, 32(6):1239-1243. http://www.cqvip.com/QK/95985X/201006/34345796.html

    GAO X G, HU M, ZHENG J S.Jaming strategy for single plane to multi-target of penetration[J].Systems Engineering and Electronic, 2010, 32(6):1239-1243(in Chinese). http://www.cqvip.com/QK/95985X/201006/34345796.html
    [7] 沈阳, 陈永光, 张秀辉, 等.基于0-1规划的雷达干扰资源分配研究[J].兵工学报, 2007, 28(5):528-532. http://www.oalib.com/paper/4453356

    SHEN Y, CHEN Y G, ZHANG X H, et al.Research on optimal distribution of radar jamming resource based on zero-one programming[J].Acta Armamentarii, 2007, 28(5):528-532(in Chinese). http://www.oalib.com/paper/4453356
    [8] ZHANG H D, XIONG L L, MA W Y.Generalized intuitionistic fuzzy soft rough set and its application in decision making[J].Journal of Computational Analysis and Applications, 2016, 20(4):750-766. https://www.researchgate.net/publication/295113586_Generalized...
    [9] SAHIN R.Fuzzy multicriteria decision making method based on the improved accuracy function for interval-valued intuitionistic fuzzy sets[J].Soft Computing, 2016, 20(7):2557-2563. doi: 10.1007/s00500-015-1657-x
    [10] JAIN A, PARDASANI K R.Fuzzy soft set model for mining amino acid associations in peptide sequences of mycobacterium tuberculosis complex(MTBC)[J].Journal of Intelligent & Fuzzy Systems, 2016, 31(1):259-273. doi: 10.3233/IFS-162139
    [11] AGARWAL M, BISWAS K K, HANMANDLU M.Generalized intuitionistic fuzzy soft sets with applications in decision-making[J].Applied Soft Computing, 2013, 13(8):3552-3566. doi: 10.1016/j.asoc.2013.03.015
    [12] FU X, LI A Q, WANG L P, et al.Short-term scheduling of cascade reservoirs using an immune algorithm-based particle swarm optimization[J].Computers & Mathematics with Applications, 2011, 62(6):2463-2471. https://www.sciencedirect.com/science/article/pii/S0898122111005864
    [13] CHE Z H.A particle swarm optimization algorithm for solving unbalanced supply chain planning problems[J].Applied Soft Computing, 2012, 12(5):1279-1287. https://www.sciencedirect.com/science/article/pii/S1568494611004807
    [14] ZHOU X C, ZHAO Z X, ZHOU K J, et al.Remanufacturing closed-loop supply chain network design based on genetic particle swarm optimization algorithm[J].Journal of Central South University of Technology, 2012, 19(2):482-487. doi: 10.1007/s11771-012-1029-y
    [15] NEDJAH N, CALAZAN R D, MOURELLE L D, et al.Parallel implementtions of the cooperative particle swarm optimization on many-core and multi-core architectures[J].International Journal of Parallel Programming, 2016, 44(6):1173-1199. doi: 10.1007/s10766-015-0368-3
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  395
  • HTML全文浏览量:  2
  • PDF下载量:  216
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-11-14
  • 录用日期:  2017-02-15
  • 刊出日期:  2017-12-20

目录

    /

    返回文章
    返回
    常见问答