留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压电纤维材料驱动下复合板扭曲变形效率分析

李琳 薛铮 范雨

李琳, 薛铮, 范雨等 . 压电纤维材料驱动下复合板扭曲变形效率分析[J]. 北京航空航天大学学报, 2018, 44(2): 229-240. doi: 10.13700/j.bh.1001-5965.2017.0107
引用本文: 李琳, 薛铮, 范雨等 . 压电纤维材料驱动下复合板扭曲变形效率分析[J]. 北京航空航天大学学报, 2018, 44(2): 229-240. doi: 10.13700/j.bh.1001-5965.2017.0107
LI Lin, XUE Zheng, FAN Yuet al. Efficiency of twist deformation of composite plate actuated by MFC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 229-240. doi: 10.13700/j.bh.1001-5965.2017.0107(in Chinese)
Citation: LI Lin, XUE Zheng, FAN Yuet al. Efficiency of twist deformation of composite plate actuated by MFC[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(2): 229-240. doi: 10.13700/j.bh.1001-5965.2017.0107(in Chinese)

压电纤维材料驱动下复合板扭曲变形效率分析

doi: 10.13700/j.bh.1001-5965.2017.0107
基金项目: 

国家自然科学基金 51675022

详细信息
    作者简介:

    李琳 女, 博士, 教授。主要研究方向:叶盘结构流致振动、智能结构动力学及振动控制

    薛铮 男, 博士。主要研究方向:主动复合材料及智能结构设计

    范雨 男, 博士。主要研究方向:智能结构动力学

    通讯作者:

    范雨, E-mail:fanyu04@buaa.edu.cn

  • 中图分类号: V214.8

Efficiency of twist deformation of composite plate actuated by MFC

Funds: 

National Natural Science Foundation of China 51675022

More Information
  • 摘要:

    含有主动材料的复合结构越来越多地应用于自适应结构中。主动纤维材料的应用为复合结构带来了新的特性也使其设计更为复杂。针对受压电纤维材料(MFC)驱动的主动材料复合板的变形进行研究,目的在于获得MFC驱动复合板扭曲变形与MFC纤维铺设及驱动模式的关系。基于弹性力学理论建立了受电压作用主动纤维产生的应变与由此导致的复合板的内力、变形之间的关系,并利用Ritz法,通过假设双向梁函数组合级数的位移场建立了该问题的求解方法,经推导得到了MFC驱动下位移场的求解方程,实验结果验证了其有效性。为了评估MFC驱动复合板在不同条件下的驱动效果,针对复合板变形所具有的弯扭耦合特点,在定义复合板截面等效扭转角和等效弯曲角的基础上提出了主动复合板驱动扭曲变形效率的概念和计算方法,利用该方法分析了MFC的铺设角度以及电压驱动模式对复合板扭曲变形效率的影响。依据分析所得到的结果给出了对应不同约束条件的MFC驱动复合板主动纤维布置及驱动模式的选择方案。

     

  • 图 1  MFC复合板的几何结构及坐标系

    Figure 1.  Geometry and coordinate system of MFC composite plate

    图 2  MFC复合板扭曲实验测试

    Figure 2.  Experimental test of twist actuation of MFC composite plate

    图 3  MFC复合板试件在MFC驱动下的位移场预测

    Figure 3.  Predicted displacement field of specimen (MFC composite plate) under actuation of MFC

    图 4  MFC复合板多点挠度测试与计算结果的对比

    Figure 4.  Comparison of deflection measurement on multi-points and calculation results of MFC composite plate

    图 5  主动材料在一体化自适应翼面中的典型应用模式

    Figure 5.  Typical application modes of active material in integrated adaptive wing surface

    图 6  MFC复合板等效扭转角β

    Figure 6.  Equivalent torsional angle β of MFC composite plate

    图 7  MFC复合板等效弯转角α

    Figure 7.  Equivalent bending angle α of MFC composite plate

    图 8  单层MFC驱动下压电纤维方向对复合板的自由边截面等效扭转角的影响(CFFF)

    Figure 8.  Effect of piezoelectric fiber direction on equivalent torsional angle at free edge section of composite plate actuated by single layer of MFC (CFFF)

    图 9  单层MFC驱动下压电纤维方向对复合板的自由边截面等效扭转角的影响(CFCF)

    Figure 9.  Effect of piezoelectric fiber direction on equivalent torsional angle at free edge section of composite plate actuated by single layer of MFC (CFCF)

    图 10  双层MFC复合板在(+/+)电压驱动模式下自由边截面等效扭转角、弯转角随压电纤维方向的变化(L/W=1, CFFF)

    Figure 10.  Evolution of equivalent torsional and bending angles at free edge section of composite plate with piezoelectric fiber direction (two layers of MFC, (+/+) actuation mode, L/W=1, CFFF)

    图 11  双层MFC复合板在(+/-)电压驱动模式下自由边截面等效扭转角、弯转角随压电纤维方向的变化(L/W=1, CFFF)

    Figure 11.  Evolution of equivalent torsional and bending angles at free edge section of composite plate with piezoelectric fiber direction (two layers of MFC, (+/-) actuation mode, L/W=1, CFFF)

    图 12  双层MFC复合板(+/+)电压驱动模式下压电纤维铺设角度(θup=-θdown)对复合板扭曲变形效率的影响(CFFF)

    Figure 12.  Effect of piezoelectric fiber laying angle (θup=-θdown) on efficiency of twist deformation of bimorph MFC composite plate under (+/+) actuation mode (CFFF)

    图 13  双层MFC复合板在(+/+)电压驱动模式下自由边截面等效扭转角、等效弯转角随压电纤维方向的变化(L/W=1, CFCF)

    Figure 13.  Evolution of equivalent torsional and bending angles at free edge section of composite plate with piezoelectric fiber direction (two layers of MFC, (+/+) actuation-mode, L/W=1, CFCF)

    图 14  双层MFC复合板在(+/-)电压驱动模式下自由边截面.等效扭转角、等效弯曲角随压电纤维方向的变化(L/W=1, CFCF)

    Figure 14.  Evolution of equivalent torsional and bending angles at free edge section of composite plate with piezoelectric fiber direction (two layers of MFC, (+/-) actuation-mode, L/W=1, CFCF)

    表  1  MFC和基板的材料参数

    Table  1.   Material parameters of MFC and substrate

    材料 E/GPa υ G/GPa t/mm Λ/10-6
    E1 E2 υ12 υ21
    M-8528-F1 30.336 15.857 0.31 0.16 5.515 0.3 [1 350, 0, 0]T
    基底 44 0.27 3.1 0.3
    下载: 导出CSV

    表  2  试件的几何参数

    Table  2.   Geometric parameters of specimen

    试件 布置形式 x方向边界条件 y方向边界条件 W/mm L/mm θup/(°) θdown/(°)
    1# bimorph C-F F-F 35 95 45 -45
    下载: 导出CSV

    表  3  CFFF约束的MFC复合板在2种驱动模式下的自由边截面等效扭转角极值

    Table  3.   Maximum equivalent torsional angles of free edge section of MFC composite plate under two actuation modes with constraint condition of CFFF

    L/W 驱动模式 βmax/(°) θup/(°) θdown/(°)
    2 +/+ 15.75 -46.8 46.8
    +/- 9.50 46.8 54
    1 +/+ 13.90 -47.7 47.7
    +/- 8.59 50.4 55.8
    0.25 +/+ 5.82 -50.4 50.4
    +/- 3.93 55.8 57.6
    下载: 导出CSV

    表  4  CFCF约束的MFC复合板在2种驱动模式下的自由边截面等效扭转角极值

    Table  4.   Maximum equivalent torsional angles of free edge section of MFC composite plate under two actuation modes with constraint condition of CFCF

    L/W 驱动模式 βmax/(°) θup/(°) θdown/(°)
    4 +/+ 3.05 -34.2 50.4
    +/- 3.98 41.4 -34.2
    1 +/+ 7.84 -45 45
    +/- 8.93 45 45
    0.25 +/+ 3.05 -55.8 39.6
    +/- 3.98 48.6 55.8
    下载: 导出CSV
  • [1] BARBARINO S, BILGEN O, AJAJ R M, et al.A review of morphing aircraft[J].Journal of Intelligent Material Systems & Structures, 2011, 22(9):823-877.
    [2] SOFLA A Y N, MEGUID S A, TAN K T, et al.Shape morphing of aircraft wing:Status and challenges[J].Materials & Design, 2010, 31(3):1284-1292. https://www.sciencedirect.com/science/article/pii/S0261306909004968
    [3] 冷劲松, 孙健, 刘彦菊.智能材料和结构在变体飞行器上的应用现状与前景展望[J].航空学报, 2014, 35(1): 29-45. http://www.doc88.com/p-9651832278792.html

    LENG J S, SUN J, LIU Y J.Application status and future prospect of smart materials and structures in morphing aircraft[J].Acta Aeronautica et Astronautica Sinica, 2014, 35(1): 29-45 (in Chinese). http://www.doc88.com/p-9651832278792.html
    [4] MANZO J, GARCIA E, WICKENHEISER A, et al.Design of a shape-memory alloy actuated macro-scale morphing aircraft mechanism[J].Proceedings of SPIE-the International Society for Optical Engineering, 2005, 5764:232-240. doi: 10.1117/12.601372.full
    [5] MANZO J, GARCIA E.Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism[J].Smart Materials & Structures, 2010, 19(19):328-335.
    [6] SHELTON A, TOMAR A, PRASAD J, et al.Active multiple winglets for improved unmanned-aerial-vehicle performance[J].Journal of Aircraft, 2015, 43(43):110-116. http://gatech.academia.edu/NarayananKomerath
    [7] BARTLEY-CHO J D, WANG D P, MARTIN C A, et al.Development of high-rate, adaptive trailing edge control surface for the smart wing phase 2 wind tunnel model[J].Journal of Intelligent Material Systems & Structures, 2004, 15(4):279-291. doi: 10.1177/1045389X04042798
    [8] BARRETT R M.Design, fabrication, and testing of a new twist-active wing design[J].Proceedings of SPIE-the International Society for Optical Engineering, 1998, 3329. doi: 10.1117/12.316919.full
    [9] 柴双双, 张卫平, 柯希俊, 等.仿昆扑翼微飞行器中压电驱动器的性能参数分析[J].上海交通大学学报, 2015, 49(5):663-668. http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201505015

    CHAI S S, ZHANG W P, KE X J, et al.Piezoelectric actuators for insect-like flapping-wing micro aerial vehicle[J].Journal of Shanghai Jiaotong University, 2015, 49(5):663-668(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/shjtdxxb201505015
    [10] 程春晓, 李道春, 向锦武, 等.柔性后缘可变形机翼气动特性分析[J].北京航空航天大学学报, 2016, 42(2):360-367. http://bhxb.buaa.edu.cn/CN/abstract/abstract13786.shtml

    CHENG C X, LI D C, XIANG J W, et al.Analysis on aerodynamic characteristics of morphing wing with flexible trailing edge[J].Journal of Beijing University of Aeronautics and Astronautics, 2016, 42(2):360-367(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract13786.shtml
    [11] LIN X J, ZHOU K C, ZHANG X Y.Development, modeling and application of piezoelectric fiber composites[J].Transactions of Nonferrous Metals Society of China, 2013, 23(1):98-107. doi: 10.1016/S1003-6326(13)62435-8
    [12] COBB R, BROWNING J, CANFIELD R, et al. F-16 ventral fin buffet alleviation using piezoelectric actuators[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston: AIAA, 2009.
    [13] OHANIAN O, HICKLING C, STILTNER B, et al. Piezoelectric morphing versus servo-actuated MAV control surfaces[C]//AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Resson: AIAA, 2012: 23-26.
    [14] LIU S, TONG L, LIN Z.Simultaneous optimization of control parameters and configurations of PZT actuators for morphing structural shapes[J].Finite Elements in Analysis & Design, 2008, 44(6-7):417-424. https://dl.acm.org/citation.cfm?id=1352932.1353092
    [15] LUO Q, TONG L.Design and testing for shape control of piezoelectric structures using topology optimization[J].Engineering Structures, 2015, 97:90-104. doi: 10.1016/j.engstruct.2015.04.006
    [16] QUAN N, TONG L.Shape control of smart composite plate with non-rectangular piezoelectric actuators[J].Composite Structures, 2004, 66(1-4):207-214. doi: 10.1016/j.compstruct.2004.04.039
    [17] MUKHERJEE A, JOSHI S.Piezoelectric sensor and actuator spatial design for shape control of piezolaminated plates[J].AIAA Journal, 2015, 40(6):1204-1210.
    [18] BÜTER A, BREITBACH E.Adaptive blade twist-calculations and experimental results[J].Aerospace Science & Technology, 1999, 4(5):309-319. https://www.sciencedirect.com/science/article/pii/S1270963800001346
    [19] 曹志远.板壳振动理论[M].北京:中国铁道出版社, 1989:32-51.

    CAO Z Y.Vibration theory of plates and shells[M].Beijing:China Railway Publishing House, 1989:32-51(in Chinese).
    [20] 毛柳伟, 王安稳, 胡明勇.粘-弹层合悬臂板瞬态响应的近似解析解[J].固体力学学报, 2010, 31(4):379-384. http://www.oalib.com/paper/4263984

    MAO L W, WANG A W, HU M Y.Approximate analytical solution for transient response of a visco-elastic laminated cantilever plate[J].Chinese Journal of Solid Mechanics, 2010, 31(4):379-384(in Chinese). http://www.oalib.com/paper/4263984
  • 加载中
图(14) / 表(4)
计量
  • 文章访问数:  375
  • HTML全文浏览量:  8
  • PDF下载量:  298
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-02-28
  • 录用日期:  2017-06-09
  • 刊出日期:  2018-02-20

目录

    /

    返回文章
    返回
    常见问答