留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直升机尾桨完全失效后自转着陆轨迹优化

严旭飞 陈仁良

严旭飞, 陈仁良. 直升机尾桨完全失效后自转着陆轨迹优化[J]. 北京航空航天大学学报, 2018, 44(6): 1203-1212. doi: 10.13700/j.bh.1001-5965.2017.0459
引用本文: 严旭飞, 陈仁良. 直升机尾桨完全失效后自转着陆轨迹优化[J]. 北京航空航天大学学报, 2018, 44(6): 1203-1212. doi: 10.13700/j.bh.1001-5965.2017.0459
YAN Xufei, CHEN Renliang. Helicopter autorotation landing trajectory optimization after tail-rotor total failure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1203-1212. doi: 10.13700/j.bh.1001-5965.2017.0459(in Chinese)
Citation: YAN Xufei, CHEN Renliang. Helicopter autorotation landing trajectory optimization after tail-rotor total failure[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1203-1212. doi: 10.13700/j.bh.1001-5965.2017.0459(in Chinese)

直升机尾桨完全失效后自转着陆轨迹优化

doi: 10.13700/j.bh.1001-5965.2017.0459
基金项目: 

国家自然科学基金 11672128

详细信息
    作者简介:

    严旭飞  男, 博士研究生。主要研究方向:直升机空气动力学与飞行力学

    陈仁良  男, 博士, 教授, 博士生导师。主要研究方向:直升机空气动力学、直升机飞行力学与控制、直升机多学科优化设计

    通讯作者:

    陈仁良, E-mail:crlae@nuaa.edu.cn

  • 中图分类号: V212.4

Helicopter autorotation landing trajectory optimization after tail-rotor total failure

Funds: 

National Natural Science Foundation of China 11672128

More Information
  • 摘要:

    为了研究直升机尾桨完全失效后自转着陆的最优轨迹和操纵过程,建立相应的飞行动力学模型并采用最优控制方法进行计算分析。建立直升机6自由度刚体飞行动力学模型,在模型中加入可以描述尾桨完全失效和自转着陆阶段发动机出轴功率以及旋翼转速变化的相关方程,并将直升机尾桨完全失效后的自转着陆问题转换为非线性最优控制问题进行求解。以某型号单旋翼带尾桨直升机为样机,计算空中停车自转着陆过程,并与飞行试验数据进行对比,验证了所建模型和最优控制方法的准确性。计算分析该型号直升机在以巡航速度下前飞时,尾桨完全失效后自转着陆的最优轨迹和操纵过程。从结果可以看出:尾桨完全失效时,直升机在旋翼反扭矩的作用下会产生较大的偏航角速度和侧滑角变化,进而产生复杂的耦合运动,驾驶员在关闭发动机进行自转着陆操作的同时,还需要通过操纵横向周期变距稳定滚转角,并以侧滑的方式来稳定横航向的姿态角,最后安全着陆。计算得到的最优轨迹和操纵过程,与工程试飞得出的定性的结论和建议相符。

     

  • 图 1  空中停车最优自转着陆过程与飞行试验数据对比

    Figure 1.  Comparison between optimal autorotation landing procedure and flight test data for in-flight shutdown

    图 2  最优自转着陆过程的状态量变化

    Figure 2.  States in optimal autorotation landing procedure

    图 3  最优自转着陆过程的功率、转速、侧滑角与操纵量的变化

    Figure 3.  Power, rotor speed, sideslip angle and controls in the optimal autorotation landing procedure

    表  1  某直升机基本参数

    Table  1.   Basic parameters of a helicopter

    参数 数值
    总质量W/kg 2 000
    旋翼半径R/m 5.345
    主桨叶片数nMb 3
    负扭θ1/(°) -12
    桨叶弦长c/m 0.35
    旋翼转速Ω/(r·min-1) 386
    旋翼实度σ 0.062
    旋翼方向 左旋
    尾桨叶片数nTb 2
    平尾面积Shs/m2 4.67
    平尾安装角ihs/(°) 0
    垂尾面积/m2 1.021
    旋翼位置/m (-0.09, 0.01, 1.53)
    平尾位置/m (-4.91, 0.01, 0.01)
    垂尾位置/m (-6.90, 0, 0.50)
    尾桨位置/m (-6.35, 0.30, -0.51)
    下载: 导出CSV
  • [1] 孙杰, 高艳辉.直升机尾桨故障及其试飞研究[J].飞行力学, 2001, 19(4):67-69. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxlx200104016

    SUN J, GAO Y H.The helicopter tail-rotor failure and the flight test[J].Flight Mechanics, 2001, 19(4):67-69(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxlx200104016
    [2] 于琦, 章海红.直升机尾桨机械性失效及试飞研究[J].飞行力学, 2008, 26(3):74-77. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxlx200803020

    YU Q, ZHANG H H.Analysis of the tail-rotor failure from mechanical malfunction and research in flight test[J].Flight Mechanics, 2008, 26(3):74-77(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fxlx200803020
    [3] 赵敬超.直升机尾桨失效分析及试飞技术研究[J].航空科学技术, 2015, 26(3):70-73. http://www.cnki.com.cn/Article/CJFDTotal-HKKX201503016.htm

    ZHAO J C.Helicopter tail rotor failure analysis and flight test technology research[J].Aeronautical Science & Technology, 2015, 26(3):70-73(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKKX201503016.htm
    [4] 张海.某型直升机尾桨桨距操纵杆断裂故障分析[J].航天制造技术, 2010(4):29-32. https://www.wenkuxiazai.com/doc/76a9467d5ef7ba0d4a733bc9.html

    ZHANG H.Fault analysis of an operating lever's rupture in helicopter[J].Aerospace Manufacturing Technology, 2010(4):29-32(in Chinese). https://www.wenkuxiazai.com/doc/76a9467d5ef7ba0d4a733bc9.html
    [5] 李春光, 舒平, 马晓明, 等.直升机尾桨连杆组件失效分析[J].失效分析与预防, 2013, 8(6):346-349. http://www.cqvip.com/QK/88392X/201306/48691305.html

    LI C G, SHU P, MA X M, et al.Failure analysis on tailor rotor rod components of a helicopter[J].Failure Analysis and Prevention, 2013, 8(6):346-349(in Chinese). http://www.cqvip.com/QK/88392X/201306/48691305.html
    [6] 艾剑波, 黄文俊, 李满福, 等.直11型机尾桨变距拉杆故障分析与处理[J].直升机技术, 2009(3):68-71. http://mall.cnki.net/magazine/Article/ZSEN200903018.htm

    AI J B, HUANG W J, LI M F, et al.The analysis and treatment on tail rotor pitch-link failure of Z11 helicopter[J].Helicopter Technique, 2009(3):68-71(in Chinese). http://mall.cnki.net/magazine/Article/ZSEN200903018.htm
    [7] GOODMAN N, BAYOUMI A, BLECHERTAS V, et al. CBM component testing at the University of South Carolina: AH-64 tail rotor gearbox studies[C]//American Helicopter Society Technical Specialists' Meeting on Condition Based Maintenance. Grapevine, Texas: AHS, 2009: 1-8.
    [8] SINGH H K, PAWAR P M, GANGULI R, et al.On the effect of mass and stiffness unbalance on helicopter tail rotor system behavior[J].Aircraft Engineering and Aerospace Technology, 2008, 80(2):129-138. doi: 10.1108/00022660810859355
    [9] 胡和平.动力学分析在某直升机尾桨故障分析中的应用[J].直升机技术, 2009(3):21-24. http://www.cqvip.com/QK/83376X/200903/1000870362.html

    HU H P.Application of dynamic analysis in helicopter tail rotor failure analysis[J].Helicopter Technique, 2009(3):21-24(in Chinese). http://www.cqvip.com/QK/83376X/200903/1000870362.html
    [10] O'ROURKE M J.Simulation model for tail rotor failure[J].Journal of Aircraft, 1994, 31(1):197-205. doi: 10.2514/3.46474
    [11] GARCIA R D, VALAVANIS K P, KANDEL A. Autonomous helicopter navigation during a tail rotor failure utilizing fuzzy logic[C]//Proceedings of the 15th Mediterranean Conference on Control & Automation. Piscataway, NJ: IEEE Press, 2007: 1-6.
    [12] JOHNSON W. Helicopter optimal descent and landing after power loss: NASA TM-73244[R]. Washington, D. C. : NASA, 1977.
    [13] LEE A Y, BRYSON A E, HINDSON W S.Optimal landing of a helicopter in autorotation[J].Journal of Guidance, Control, and Dynamics, 1988, 11(1):7-12. doi: 10.2514/3.20262
    [14] CHEN R T N, ZHAO Y. Optimal trajectories for the helicopter in one-engine-inoperative terminal area operations: NASA TM-110400[R]. Washington, D. C. : NASA, 1996.
    [15] OKUNO Y, KEIJI K, AKIRA A.Analytical prediction of height-velocity diagram of a helicopter using optimal theory[J].Journal of Guidance, Control, and Dynamics, 1991, 14(2):453-459. doi: 10.2514/3.20659
    [16] BIBIK P, NARKIEWICZ J.Helicopter optimal control after power failure using comprehensive dynamic model[J].Journal of Guidance, Control, and Dynamics, 2012, 35(4):1354-1362. doi: 10.2514/1.51371
    [17] BOTTASSO C L, MAISANO G, SCORCELLETTI F.Trajectory optimization procedures for rotorcraft vehicles, their software implementation, and applicability to models of increasing complexity[J].Journal of the American Helicopter Society, 2010, 55(3):32010. doi: 10.4050/JAHS.55.032010
    [18] 孟万里, 陈仁良.直升机单发失效后自转着陆轨迹优化[J].航空学报, 2011, 32(9):1599-1607. http://cdmd.cnki.com.cn/Article/CDMD-10287-2007194125.htm

    MENG W L, CHEN R L.Trajectory optimization of helicopter autorotation landing after one engine failure[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(9):1599-1607(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-2007194125.htm
    [19] MENG W L, CHEN R L.Study of helicopter autorotation landing following engine failure based on a six-degree-of-freedom rigid-body dynamic model[J].Chinese Journal of Aeronautics, 2013, 26(6):1380-1388. doi: 10.1016/j.cja.2013.07.041
    [20] 孟万里. 直升机单台发动机失效后飞行轨迹优化研究和应用[D]. 南京: 南京航空航天大学, 2014: 27-57. http://cdmd.cnki.com.cn/Article/CDMD-10287-1015951833.htm

    MENG W L. Study and application of trajectory optimization for helicopter flight after one engine failure[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2014: 27-57(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10287-1015951833.htm
    [21] KIM C J, SUNG S, PARK S H, et al.Numerical time-scale separation for rotorcraft nonlinear optimal control analyses[J].Journal of Guidance, Control, and Dynamics, 2014, 37(2):658-673. doi: 10.2514/1.59557
    [22] KIM S. Certification of transport category rotorcraft: 29-2C[S]. Washington: Federal Aviation Administration, Department of Transportation, 2014: 57-146.
    [23] GILL P E, MURRAY W, SAUNDERS M A. User's guide for SNOPT version 7: Software for large-scale nonlinear programming[D]. San Diego: University of California, 2007: 4-29.
    [24] 牛永红, 杨百兴.Z11直升机自转着陆试飞[J].飞行力学, 2001, 19(3):74-76. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fhlx200103020&dbname=CJFD&dbcode=CJFQ

    NIU Y H, YANG B X.Flight test of Z11 helicopter autorotation landing[J].Flight Dynamics, 2001, 19(3):74-76(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=fhlx200103020&dbname=CJFD&dbcode=CJFQ
  • 加载中
图(3) / 表(1)
计量
  • 文章访问数:  421
  • HTML全文浏览量:  2
  • PDF下载量:  386
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-07-06
  • 录用日期:  2017-10-13
  • 刊出日期:  2018-06-20

目录

    /

    返回文章
    返回
    常见问答