留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

预燃级旋流数对TeLESSⅡ燃烧室贫油熄火性能影响

肖荣洪 林宇震 张弛

肖荣洪, 林宇震, 张弛等 . 预燃级旋流数对TeLESSⅡ燃烧室贫油熄火性能影响[J]. 北京航空航天大学学报, 2018, 44(6): 1265-1272. doi: 10.13700/j.bh.1001-5965.2017.0392
引用本文: 肖荣洪, 林宇震, 张弛等 . 预燃级旋流数对TeLESSⅡ燃烧室贫油熄火性能影响[J]. 北京航空航天大学学报, 2018, 44(6): 1265-1272. doi: 10.13700/j.bh.1001-5965.2017.0392
XIAO Ronghong, LIN Yuzhen, ZHANG Chiet al. Effect of swirl number of pilot stage on TeLESS Ⅱ combustor's lean blow-out performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1265-1272. doi: 10.13700/j.bh.1001-5965.2017.0392(in Chinese)
Citation: XIAO Ronghong, LIN Yuzhen, ZHANG Chiet al. Effect of swirl number of pilot stage on TeLESS Ⅱ combustor's lean blow-out performance[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(6): 1265-1272. doi: 10.13700/j.bh.1001-5965.2017.0392(in Chinese)

预燃级旋流数对TeLESSⅡ燃烧室贫油熄火性能影响

doi: 10.13700/j.bh.1001-5965.2017.0392
详细信息
    作者简介:

    肖荣洪  男, 硕士研究生。主要研究方向:航空发动机燃烧性能

    林宇震  男, 博士, 教授, 博士生导师。主要研究方向:航空发动机燃烧室前沿理论及技术

    通讯作者:

    林宇震, E-mail:linyuzhen@buaa.edu.cn

  • 中图分类号: V231.2

Effect of swirl number of pilot stage on TeLESS Ⅱ combustor's lean blow-out performance

More Information
  • 摘要:

    北京航空航天大学发展的TeLESSⅡ低排放燃烧室采用中心分级的布局方式,其中心为经典的旋流杯结构预燃级,为燃烧室提供稳定的点火源,预燃级外圈采用预混设计的单级轴向旋流器的主燃级以降低排放。研究了预燃级一级旋流器和二级旋流器的旋流数组合对燃烧室熄火性能的影响,研究表明预燃级的设计在中心分级低排放燃烧室火焰稳定中扮演重要角色。在常温常压条件下的单头部燃烧室上测量贫油熄火油气比,并通过数值计算对比分析不同方案在熄火时的气动热力特征。研究表明:回流区总温越高燃烧室贫油熄火油气比越低,二级旋流数减少有利于火焰和流场的耦合,从而提高回流区火焰稳定,拓宽贫油熄火边界。一级旋流数增加贫油熄火油气比不是随之降低。

     

  • 图 1  头部试验件结构

    Figure 1.  Structure of test piece dome

    图 2  贫油熄火试验系统

    Figure 2.  Test system of lean blow-out

    图 3  试验中油气比随时间变化

    Figure 3.  Change of gas-oil ratio in test with time

    图 4  方案1~方案3贫油熄火边界

    Figure 4.  Boundary line of lean blow-out for Case1 to Case3

    图 5  方案1~方案5中心截面温度云图

    Figure 5.  Center section temperature contours for Case1 to Case5

    图 6  方案1~方案5中心截面流线和温度云图

    Figure 6.  Center section streamline and temperature contours for Case1 to Case5

    图 7  方案1~方案5三维回流区温度云图

    Figure 7.  3D recirculation zone temperature contours for Case1 to Case5

    图 8  方案1、方案3和方案5沿程回流量

    Figure 8.  Recirculation air along flow channel for Case1, Case3 and Case5

    图 9  方案1、方案2和方案4沿程回流量

    Figure 9.  Recirculation air along flow channel for Case1, Case2 and Case4

    表  1  各方案设计参数

    Table  1.   Design parameters of each case

    方案 预燃级一级旋流数 预燃级二级旋流数
    方案1 0.4 0.8
    方案2 0.4 0.6
    方案3 0.6 0.8
    方案4 0.4 0.4
    方案5 0.8 0.8
    下载: 导出CSV

    表  2  回流区体积和总温

    Table  2.   Recirculation zone volume and total temperature

    方案 压降/
    %
    回流区体积/m3 流体域体积/m3 回流区占流体域比例/% 回流区平均总温/K
    方案1 2 0.473 0 2.996 3 15.79 1 656.608
    方案2 2 0.261 7 2.996 3 8.73 1 769.055
    方案3 2 0.253 1 2.996 3 8.45 1 774.167
    方案4 2 0.243 1 2.996 3 8.11 1 781.759
    方案5 2 0.291 1 2.996 3 9.71 1 726.936
    方案1 3 0.436 2 2.996 3 14.56 1 594.235
    方案2 3 0.241 3 2.996 3 8.05 1 720.237
    方案3 3 0.224 2 2.996 3 7.48 1 758.021
    方案4 3 0.220 7 2.996 3 7.37 1 752.239
    方案5 3 0.271 0 2.996 3 9.04 1 680.236
    方案1 4 0.339 3 2.996 3 11.32 1 566.672
    方案2 4 0.212 9 2.996 3 7.11 1 684.975
    方案3 4 0.196 1 2.996 3 6.54 1 702.293
    方案4 4 0.193 6 2.996 3 6.46 1 714.822
    方案5 4 0.255 9 2.996 3 8.54 1 635.813
    下载: 导出CSV
  • [1] LEFEBVRE A H.Fuel effects on gas turbine combustion ignition, stability and combustion efficiebcy[J].ASME Journal of Engineering for Gas Turbines and Power, 1985, 107(1):24-37. doi: 10.1115/1.3239693
    [2] PERTERS J E, MELLOR A M.A spark ignition model for liquid fuel sprays applied to gas turbine combustor[J].Journal of Energy, 1982, 6(4):272-274. doi: 10.2514/3.48048
    [3] PERTERS J E, MELLOR A M.Characteristic time ignition model extended to an annular gas turbine combustor[J].Journal of Energy, 1982, 6(6):439-441. doi: 10.2514/3.48061
    [4] SEN S, CHAUDHARI R R, MUKHOPADHYAY A. Lean blowout detection techniques for partially premixed flames in a dump combustor[M]//AGARWAL A, PANDEY A, AGGARWAL S, et al. Novel combustion concepts for sustainable energy development. Berlin: Springer, 2014: 199-232.
    [5] YI T, GUTMARK E J.Real-time prediction of incipient lean blowout in gas turbine combustors[J].AIAA Journal, 2015, 45(7):1734-1739. doi: 10.2514/1.25847
    [6] SARKAR S, RAY A, MUKHOPADHYAY A, et al.Dynamic data-driven prediction of lean blowout in a swirl-stabilized combustor[J].Spray & Combustion Dynamics, 2015, 7(3):209-242. http://www.ingentaconnect.com/content/doaj/17568277/2015/00000007/00000003/art00002
    [7] FOUST M J, THOMSEN D, STICKLES R, et al. Development of the GE aviation low emissions TAPS combustor for next generation aircraft engines: AIAA-2012-0936[R]Reston: AIAA, 2012.
    [8] MONGIA H C. Engineering aspects of complex gas turbine combustion mixers: PartⅠhigh ΔT: AIAA-2011-106[R]. Reston: AIAA, 2011.
    [9] 邹博文, 许全宏, 曹文宇, 等.中心分级燃烧室耦合回流区贫油熄火机理[J].航空动力学报, 2013, 28(8):1759-1763. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201405002.htm

    ZOU B W, XU Q H, CAO W Y, et al.Lean blowout mechanism of coupled recirculation zone in concentric staged combustor[J].Journal of Aerospace Power, 2013, 28(8):1759-1763(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKDI201405002.htm
    [10] SULABH K D, JACOB E T, DRISCOOL J F, et al.Unsteady aspects of lean premixed-prevaporized (LPP) gas turbine combustors:Flame-flame interactions[J].Journal of Propulsion and Power, 2011, 27(3):631-641. doi: 10.2514/1.B34001
    [11] SULABH K D, JAMES F D. Instantaneous flow structures in a reacting gas turbine combustor: AIAA-2008-4683[R]. Reston: AIAA, 2008.
    [12] MOHAMMAD B S, JEMGS S M.Gas turbine combustor sector flow structure[J].Journal of Propulsion and Power, 2011, 27(3):710-717. doi: 10.2514/1.B34114
    [13] BAKE S, LAZIK W, DOERR T, et al. Development of lean-burn low-NOx combustion technology at rolls-royce deutschland[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea and Air. New York: ASME, 2008: 797-807.
    [14] MEIER U, HEINZE J, LANGE L, et al.Characterisation of the combustion performance of low emission fuel injectors with laser measurements[J].CEAS Aeronautical Journal, 2012, 3(1):45-53. doi: 10.1007/s13272-012-0042-z
    [15] YAMAMOTO T, SHIMODAIRA K, KUROSAWA Y, et al. Investigations of a staged fuel nozzle for aeroengines by multi-sector combustor test[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea and Air. New York: ASME, 2010: 961-973.
    [16] YAMAMOTO T, SHIMODAIRA K, KUROSAWA Y, et al. Research and development of staging fuel nozzle for aeroengine[C]//Proceedings of ASME Turbo Expo 2009: Power for Land, Sea and Air. New York: ASME, 2009: 639-646.
    [17] 王铮钧, 索建秦, 黎明, 等.基于贫油预混预蒸发(LPP)的多点喷射低污染燃烧室头部方案研究[J].科学技术与工程, 2013, 13(34):10409-10420. doi: 10.3969/j.issn.1671-1815.2013.34.059

    WANG Z J, SUO J Q, LI M, et al.Study on the effects of simulation method of condition boundary on modal analysis[J].Science Technology and Engineering, 2013, 13(34):10409-10420(in Chinese). doi: 10.3969/j.issn.1671-1815.2013.34.059
    [18] 刘富强, 穆勇, 刘存喜, 等.燃油分级对中心分级燃烧室NOx排放的影响[J].燃烧科学与技术, 2013, 19(3):254-260. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_rskxyjs201303010

    LIU F Q, MU Y, LIU C X, et al.Influence of fuel stage proportion on NOx emission from central stage combustor[J].Journal of Combustion Science and Technology, 2013, 19(3):254-260(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_rskxyjs201303010
    [19] 邓远灏, 马存祥, 郭凯, 等.贫油预混预蒸发燃烧室排放试验研究[J].推进技术, 2016, 37(4):691-697. http://www.cqvip.com/QK/94195X/201301/44622227.html

    DENG Y H, MA C X, GUO K, et al.Experimental investigation on emission of lean premixed preevaporation combustor[J].Journal of Propulsion Technology, 2016, 37(4):691-697(in Chinese). http://www.cqvip.com/QK/94195X/201301/44622227.html
    [20] 刘殿春, 董玉玺, 尚守堂, 等.单环腔中心分级燃烧室流场数值模拟[J].航空动力学报, 2010, 25(6):1251-1257. http://mall.cnki.net/magazine/article/HKDI201006009.htm

    LIU D C, DONG Y X, SHANG S T, et al.Numerical simulation of the flow field in a single annular concentric staged combustor[J].Journal of Aerospace Power, 2010, 25(6):1251-1257(in Chinese). http://mall.cnki.net/magazine/article/HKDI201006009.htm
    [21] 高贤智, 李锋, 郭大鹏.超高温升中心分级燃烧室设计及计算分析[J].航空发动机, 2015, 41(1):9-15. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201501003

    GAO X Z, LI F, GUO D P.Design and computational analysis of ultra-High temperature rise concentric staged combustor[J].Aeroengine, 2015, 41(1):9-15(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkfdj201501003
    [22] 郭凯, 马鑫, 马存祥, 等.一种贫油燃烧室进口温度和压力对污染物排放影响的试验研究[J].燃气涡轮试验与研究, 2014, 27(1):28-31. http://www.cqvip.com/QK/85037X/201401/48846961.html

    GUO K, MA X, MA C X, et al.Experimental research of the influence of inlet pressure and temperature on pollutant emissions for an inter-staged lean combustor[J].Gas Turbine Experiment and Research, 2014, 27(1):28-31(in Chinese). http://www.cqvip.com/QK/85037X/201401/48846961.html
    [23] 付镇柏, 林宇震, 张弛, 等.中心分级燃烧室预燃级燃烧性能实验[J].航空动力学报, 2015, 30(1):46-52. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201501007

    FU Z B, LIN Y Z, ZHANG C, et al.Experiment of combustion performance of internally-staged combustor pilot stage[J].Journal of Aerospace Power, 2015, 30(1):46-52(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201501007
    [24] 付镇柏, 林宇震, 傅奇慧, 等.不同台阶高度对中心分级燃烧室点火熄火性能的影响[J].航空动力学报2014, 29(5):1062-1070. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201405010

    FU Z B, LIN Y Z, FU Q H, et al.Effect of different step heights on ignition blowout performance of internally-staged combustor[J].Journal of Aerospace Power, 2014, 29(5):1062-1070(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201405010
    [25] 李海涛, 许全宏, 付镇柏, 等.中心分级燃烧室预燃级贫油熄火性能试验[J].航空动力学报, 2014, 29(9):2188-2194. http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkdlxb201409024

    LI H T, XU Q H, FU Z B, et al.Experiment on lean biow-out performance of pilot stage in internally-staged combustor[J].Journal of Aerospace Power, 2014, 29(9):2188-2194(in Chinese). http://industry.wanfangdata.com.cn/dl/Detail/Periodical?id=Periodical_hkdlxb201409024
    [26] 代威, 林宇震, 张弛.第2级径向旋流器旋流数对燃烧室点火和贫油熄火性能的影响[J].航空动力学报, 2015, 30(5):1092-1098. http://www.cnki.com.cn/Article/CJFDTotal-HKDI201505011.htm

    DAI W, LIN Y Z, ZHANG C.Effects of swirl number of second stage radial swirler on combustor ignition and lean blow-out performances[J].Journal of Aerospace Power, 2015, 30(5):1092-1098(in Chinese). http://www.cnki.com.cn/Article/CJFDTotal-HKDI201505011.htm
    [27] WANG B, ZHANG C, LIN Y, et al.Influence of main swirler vane angle on the ignition performance of TeLESS-Ⅱ combustor[J].Journal of Engineering for Gas Turbines & Power, 2016, 139(1):011501-011508. http://dynamicsystems.asmedigitalcollection.asme.org/article.aspx?articleid=2534528&resultClick=1
    [28] WANG B, ZHANG C, HUI X, et al. Influence of sleeve angle on the LBO performance of TeLESS-Ⅱ combustor: AIAA-2016-4693[R]. Reston: AIAA, 2016.
    [29] BEER J M, CHIGIER N A.Combustion aerodynamics[M].London:Applied Science Publishers Ltd., 1972.
    [30] BALLAL D R, LEFEBVRE A H.Weak extinction limits of turbulent flowing mixtures[J].Journal of Engineering for Power, 101(3):343-348. doi: 10.1115/1.3446582
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  8
  • PDF下载量:  383
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-06-12
  • 录用日期:  2017-10-20
  • 刊出日期:  2018-06-20

目录

    /

    返回文章
    返回
    常见问答