留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于本征正交分解的平流层风场建模与预测

李魁 邓小龙 杨希祥 侯中喜 周新

李魁, 邓小龙, 杨希祥, 等 . 基于本征正交分解的平流层风场建模与预测[J]. 北京航空航天大学学报, 2018, 44(9): 2013-2020. doi: 10.13700/j.bh.1001-5965.2017.0685
引用本文: 李魁, 邓小龙, 杨希祥, 等 . 基于本征正交分解的平流层风场建模与预测[J]. 北京航空航天大学学报, 2018, 44(9): 2013-2020. doi: 10.13700/j.bh.1001-5965.2017.0685
LI Kui, DENG Xiaolong, YANG Xixiang, et al. Modeling and prediction of stratospheric wind field based on proper orthogonal decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 2013-2020. doi: 10.13700/j.bh.1001-5965.2017.0685(in Chinese)
Citation: LI Kui, DENG Xiaolong, YANG Xixiang, et al. Modeling and prediction of stratospheric wind field based on proper orthogonal decomposition[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(9): 2013-2020. doi: 10.13700/j.bh.1001-5965.2017.0685(in Chinese)

基于本征正交分解的平流层风场建模与预测

doi: 10.13700/j.bh.1001-5965.2017.0685
基金项目: 

国家部委基金资助项目 GFZX0X0201-1

详细信息
    作者简介:

    李魁  男, 硕士研究生。主要研究方向:临近空间飞行器动力学与控制

    杨希祥  男, 博士, 副教授, 硕士生导师。主要研究方向:临近空间飞行器总体设计、动力学与控制

    通讯作者:

    杨希祥.E-mail:nkyangxixiang@163.com

  • 中图分类号: V321.2

Modeling and prediction of stratospheric wind field based on proper orthogonal decomposition

Funds: 

National Ministries and Commissions Foundation Item of China GFZX0X0201-1

More Information
  • 摘要:

    平流层风场环境对临近空间低动态飞行器设计和轨迹控制具有重要影响。针对平流层风场建模,提出一种基于本征正交分解(POD)的风场数据降阶方法,在此基础上,提出一种可以对平流层风场进行预测的Fourier模型。以长沙地区2005—2009年风场为例,采用提出的POD方法与Fourier预测模型对风场进行建模与预测,并对Fourier预测精度进行分析。研究结果表明,采用POD方法可以对东西方向风场进行高效率高精度降阶建模;通过Fourier预测模型可以对东西方向风场进行准确预测,预测精度与实际风场随时间变化的规律性有关,风场数据越紧凑,周期性越明显,预测精度越高。

     

  • 图 1  相对模态能量分布

    Figure 1.  Relative mode energy distribution

    图 2  采用POD方法重建风场

    Figure 2.  Reconstruction of wind field using POD method

    图 3  系数拟合(东西方向)

    Figure 3.  Coefficient fitting (east-west direction)

    图 4  系数拟合(南北方向)

    Figure 4.  Coefficient fitting (north-south direction)

    图 5  各种方法下风矢量图的比较

    Figure 5.  Comparison of wind vector plots for various methods

    图 6  实际风矢量图与预测风矢量图的对比

    Figure 6.  Comparison of actual wind vector with predicted wind vector plots

    图 7  残差分析

    Figure 7.  Residual analysis

    图 8  不同高度的风速变化情况

    Figure 8.  Change of wind speed at different altitudes

    图 9  不同高度的残差分析

    Figure 9.  Residual analysis at different altitudes

  • [1] 王彦广, 李健全, 李勇, 等.近空间飞行器的特点及其应用前景[J].航天器工程, 2007, 16(1):50-57. doi: 10.3969/j.issn.1673-8748.2007.01.010

    WANG Y G, LI J Q, LI Y, et al.The characteristics of spacecraft and its application prospect[J].Spacecraft Engineering, 2007, 16(1):50-57(in Chinese). doi: 10.3969/j.issn.1673-8748.2007.01.010
    [2] 陶梦初, 何金海, 刘毅.平流层准零风层统计特征及准两年周期振荡对其影响分析[J].气候与环境研究, 2012, 17(1):92-102. doi: 10.3878/j.issn.1006-9585.2011.10087

    TAO M C, HE J H, LIU Y.Study on the statistical characteristics of the quasi-zero wind stratosphere and the influence of quasi-two-year periodic oscillations on the stratosphere[J].Climate and Environment Research, 2012, 17(1):92-102(in Chinese). doi: 10.3878/j.issn.1006-9585.2011.10087
    [3] SHANG L, LIU Y, WANG Y, et al.Seasonal distribution of ozone and radiation field at the stratosphere[J].Chinese Journal of Space Science, 2015, 504(3):213-217. https://www.sciencedirect.com/science/article/pii/S1878029612003155#!
    [4] 王文龙.大气风场模型研究及应用[D].长沙: 国防科学技术大学, 2009.

    WANG W L.Study and application of atmospheric wind field model[D].Changsha: National University of Defense and Technology, 2009(in Chinese).
    [5] DAN R, HUA H, CASTAN~ÓN D A, et al.Normalized proper orthogonal decomposition (NPOD) for building pressure data compression[J].Journal of Wind Engineering & Industrial Aerodynamics, 2006, 94(6):447-461. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ029261091
    [6] HOLMES J D, SANKARAN R, KWOK K C S, et al. Eigenvector modes of fluctuating pressures on low-rise building models[J].Journal of Wind Engineering & Industrial Aerodynamics, 1997, 69-71:697-707. https://www.sciencedirect.com/science/article/pii/S0167610597001980
    [7] FIC A, BIALECKI R A, KASSAB A J.Solving transient nonlinear heat conduction problems by proper orthogonal decomposition and the finite-element method[J].Numerical Heat Transfer Part B Fundamentals, 2005, 48(2):103-124. doi: 10.1080/10407790590935920
    [8] TAN B T, DAMODARAN M, WILLCOX K E. Aerodynamic data reconstruction and inverse design using proper orthogonal decomposition[J].AIAA Journal, 2004, 42(8):1505-1516. doi: 10.2514/1.2159
    [9] 胡亮.基于特征正交分解的桥梁风场随机模拟[D].武汉: 华中科技大学, 2007.

    HU L.Study on stochastic simulation of bridge wind field based on characteristic orthogonal decomposition[D].Wuhan: Huazhong University of Science and Technology, 2007(in Chinese).
    [10] 陶青秋.本征正交分解(POD)方法在建筑风荷载及其动态响应中的应用研究[D].汕头: 汕头大学, 2002.

    TAO Q Q.Application of the proper orthogonal decomposition (POD) method in building wind load and its dynamic response[D]. Shantou: Shantou University, 2002(in Chinese).
    [11] 邹垚, 梁枢果, 邹良浩.基于本征模态修正的POD法在风场重建中的应用[J].土木工程学报, 2010, 43(s1):305-309. http://d.old.wanfangdata.com.cn/Conference/7378928

    ZOU Y, LIANG S G, ZOU L H.Application of POD method based on eigen modification in wind field reconstruction[J].China Civil Engineering Journal, 2010, 43(s1):305-309(in Chinese). http://d.old.wanfangdata.com.cn/Conference/7378928
    [12] CHEN X, KAREEM A.Proper orthogonal decomposition-based modeling, analysis, and simulation of dynamic wind load effects on structures[J].Journal of Engineering Mechanics, 2005, 131(4):325-339. doi: 10.1061/(ASCE)0733-9399(2005)131:4(325)
    [13] CHATTERJEE A.An introduction to the proper orthogonal decomposition[J].Current Science, 2000, 78(7):808-817. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000232920
    [14] EVERSON R, SIROVICH L.Karhunen-Loeve procedure for gappydata[J].Journal of the Optical Society of America A, 1995, 12(8):1657-1664. doi: 10.1364/JOSAA.12.001657
    [15] SIROVICH L.Turbulence and the dynamics of coherent structures Part Ⅰ:Coherent structures[J].Quarterly of Applied Mathematics, 1986, 45(3):561-571. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_physics%2f0604062
    [16] KUNISCH K.Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamics[J]. SIAM Journal on Numerical Analysis Archive, 2002, 40(2):492-515. doi: 10.1137/S0036142900382612
    [17] 胡金秀, 郑保敬, 高效伟.基于特征正交分解降阶模型的瞬态热传导分析[J].中国科学:物理学力学天文学, 2015, 45(1):014602. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JGXK201501006&dbname=CJFD&dbcode=CJFQ

    HU J X, ZHENG B J, GAO X W.Virtual overtemperature analysis based on reduced order model of characteristic orthogonal decomposition[J].Chinese Science:Physics, Astronomy, 2015, 45(1):014602(in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JGXK201501006&dbname=CJFD&dbcode=CJFQ
    [18] 杜娟.流体力学方程基于POD方法的降维数值解法研究[D].北京: 北京交通大学, 2011.

    DU J.Research on decreasing numerical solution of fluid dynamics equations based on POD method[D].Beijing: Beijing Jiaotong University, 2011(in Chinese).
    [19] HEIKKILÄU, SHI X, PHIPPS S J, et al.10Be in late deglacial climate simulated by ECHAM5-HAM-Part 2:Isolating the solar signal from 10Be deposition[J].Climate of the Past Discussions, 2013, 9(5):5627-5657. doi: 10.5194/cpd-9-5627-2013
  • 加载中
图(9)
计量
  • 文章访问数:  344
  • HTML全文浏览量:  0
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-11-06
  • 录用日期:  2018-04-08
  • 刊出日期:  2018-09-20

目录

    /

    返回文章
    返回
    常见问答