留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

线性伪谱模型预测能量最优姿态机动控制方法

冯逸骏 陈万春 杨良

冯逸骏, 陈万春, 杨良等 . 线性伪谱模型预测能量最优姿态机动控制方法[J]. 北京航空航天大学学报, 2018, 44(10): 2165-2175. doi: 10.13700/j.bh.1001-5965.2017.0770
引用本文: 冯逸骏, 陈万春, 杨良等 . 线性伪谱模型预测能量最优姿态机动控制方法[J]. 北京航空航天大学学报, 2018, 44(10): 2165-2175. doi: 10.13700/j.bh.1001-5965.2017.0770
FENG Yijun, CHEN Wanchun, YANG Lianget al. Fuel-optimal attitude maneuver using linear pseudo-spectral model predictive control method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2165-2175. doi: 10.13700/j.bh.1001-5965.2017.0770(in Chinese)
Citation: FENG Yijun, CHEN Wanchun, YANG Lianget al. Fuel-optimal attitude maneuver using linear pseudo-spectral model predictive control method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(10): 2165-2175. doi: 10.13700/j.bh.1001-5965.2017.0770(in Chinese)

线性伪谱模型预测能量最优姿态机动控制方法

doi: 10.13700/j.bh.1001-5965.2017.0770
详细信息
    作者简介:

    冯逸骏  男, 博士研究生。主要研究方向:飞行器总体设计、导航制导与控制

    陈万春  男, 博士, 教授, 博士生导师。主要研究方向:飞行力学、导航制导与控制

    杨良  男, 博士, 讲师。主要研究方向:飞行器总体设计、弹道优化、先进飞行器的制导与控制

    通讯作者:

    陈万春, E-mail:wanchun_chen@buaa.edu.cn

  • 中图分类号: V448.22+2

Fuel-optimal attitude maneuver using linear pseudo-spectral model predictive control method

More Information
  • 摘要:

    针对大气层外飞行器大角度姿态机动控制问题,提出了一种能量最优的线性伪谱模型预测大角度姿态机动控制方法。首先,通过离线弹道规划获得满足初始、终端约束且能量最优的姿态机动控制轨迹;然后,以离线弹道为基准对姿态动力学方程进行小扰动线性化处理,获得以状态偏差为自变量的线性误差传播方程;最后,以能量最优作为性能指标,通过高斯伪谱法对原问题进行离散,推导获得满足终端偏差修正的控制解析表达式。数值计算和蒙特卡罗仿真表明,该方法不仅计算精度高、求解速度快,满足实时计算要求,而且具有较强的鲁棒性,能够实时消除各种干扰。此外,在同等控制精度条件下,该方法相对传统线性二次型调节器(LQR)跟踪方法,能量消耗减小10%。

     

  • 图 1  高斯正交节点示意图

    Figure 1.  Schematic diagram of Gauss quadrature points

    图 2  能量最优姿态机动姿态角仿真曲线

    Figure 2.  Simulation curves of attitude angles of fuel-optimal attitude maneuvers

    图 3  能量最优姿态机动角速度仿真曲线

    Figure 3.  Simulation curves of angular velocities of fuel-optimal attitude maneuvers

    图 4  能量最优姿态机动控制力矩仿真曲线

    Figure 4.  Simulation curves of control moment of fuel-optimal attitude maneuvers

    图 5  姿态机动蒙特卡罗仿真姿态角曲线

    Figure 5.  Curves of attitude angle maneuvers using Monte Carlo simulation

    图 6  姿态机动蒙特卡罗仿真角速度曲线

    Figure 6.  Curves of angular velocities of attitude maneuvers using Monte Carlo simulation

    图 7  姿态机动蒙特卡罗仿真终端精度散布图

    Figure 7.  Scatter diagram of terminal accuracy of attitude maneuvers using Monte Carlo simulation

    图 8  姿态机动蒙特卡罗仿真能量消耗对比图

    Figure 8.  Comparison of energy consumption of attitude maneuvers using Monte Carlo simulation

    表  1  飞行器模型参数

    Table  1.   Model parameters of spacecraft

    参数J/(kg·m2)Umax/(N·m)
    数值diag(5, 70, 70)[5  10  10]
    下载: 导出CSV

    表  2  姿态机动单次仿真结果

    Table  2.   Single simulation results of attitude maneuvers

    控制方法[γf  θf  ψf]/(°)[ω1f  ω2f  ω3f]/((°)·s-1)Φ/(N2·m2·s)
    线性伪谱模型预测控制[0.15  -0.19  0.07][0.008 1  0.94  -0.48]247.98
    LQR跟踪标称轨迹-参数1[0.26  -0.16  0.35][-0.097  1.04  -0.56]260.54
    LQR直接控制-参数1[7.76  17.7  -9.78][2.21  1.43  -3.28]489.22
    LQR跟踪标称轨迹-参数2[1.14  0.7  0.62][-0.13  0.75  -0.75]240.58
    LQR直接控制-参数2[8.7  23.4  -12.1][1.93  4.09  -2.76]249.75
    下载: 导出CSV

    表  3  姿态机动蒙特卡罗仿真终端精度

    Table  3.   Terminal accuracy of attitude maneuvers using Monte Carlo simulation

    终端项线性伪谱模型
    预测控制
    LQR跟踪
    标称轨迹-参数1
    均值标准差均值标准差
    γf/(°)0.004 70.004 7-0.0460.222 3
    θf/(°)-0.056 50.056 5-0.0500.118 3
    ψf/(°)0.028 40.028 40.0200.198 0
    ω1f/((°)·s-1)0.004 60.004 6-0.008 30.076 8
    ω2f/((°)·s-1)0.994 60.994 61.014 80.031 6
    ω3f/((°)·s-1)-0.496 20.496 2-0.489 70.055 7
    下载: 导出CSV

    表  4  姿态机动蒙特卡罗仿真仿真时间

    Table  4.   Simulation time of attitude maneuvers using Monte Carlo simulation

    仿真时间
    LQR跟踪
    标称轨迹-
    参数1
    线性伪谱模型预测控制
    8个节点10个节点12个节点
    指令生成时间/ms14.6597078
    全过程仿真时间/s4.2864.1434.3524.704
    下载: 导出CSV
  • [1] 盖俊峰, 赵国荣, 周大旺.刚体飞行器姿态机动的模型预测控制方法[J].弹箭与制导学报, 2015, 35(2):5-9. http://d.old.wanfangdata.com.cn/Periodical/djyzdxb201502002

    GAI J F, ZHAO G R, ZHOU D W.A model predictive control method for rigid aircraft attitude maneuver[J].Journal of Projectiles, Rockets, Missiles and Guidance, 2015, 35(2):5-9(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/djyzdxb201502002
    [2] 赵健康, 尹秋岩, 戴金海.空间飞行器姿态机动预测跟踪控制技术[J].系统仿真学报, 2004, 16(4):711-713. doi: 10.3969/j.issn.1004-731X.2004.04.030

    ZHAO J K, YIN Q Y, DAI J H.Forecast-tracking control of attitude maneuver of spacecraft based on tracking-filter[J].Journal of System Simulation, 2004, 16(4):711-713(in Chinese). doi: 10.3969/j.issn.1004-731X.2004.04.030
    [3] BHARADWAJ S, OSIPCHUK M, MEASE K D, et al.Geometry and inverse optimality in global attitude stabilization[J].Journal of Guidance, Control, and Dynamics, 1998, 21(6):930-939. doi: 10.2514/2.4327
    [4] TEWARI A.Optimal nonlinear spacecraft attitude control through Hamilton-Jacobi formulation[J].The Journal of the Astronautical Sciences, 2002, 50(1):99-112. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0216024958/
    [5] SHARMA R, TEWARI A.Optimal nonlinear tracking of spacecraft attitude maneuvers[J].IEEE Transactions on control systems technology, 2004, 12(5):677-682. doi: 10.1109/TCST.2004.825060
    [6] LUO W, CHU Y C, LING K V.Inverse optimal adaptive control for attitude tracking of spacecraft[J].IEEE Transactions on Automatic Control, 2005, 50(11):1639-1654. doi: 10.1109/TAC.2005.858694
    [7] YONMOOK P.Inverse optimal and robust nonlinear attitude control of rigid spacecraft[J].Aerospace Science and Technology, 2013, 28(1):257-265. doi: 10.1016/j.ast.2012.11.006
    [8] ALEXIS K, NIKOLAKOPOULOS G, TZES A.Switching model predictive attitude control for a quadrotor helicopter subject to atmospheric disturbances[J].Control Engineering Practice, 2011, 19(10):1195-1207. doi: 10.1016/j.conengprac.2011.06.010
    [9] GAVILAN F, VAZQUEZ R, CAMACHO E F.Chance-constrained model predictive control for spacecraft rendezvous with disturbance estimation[J].Control Engineering Practice, 2012, 20(2):111-122. doi: 10.1016/j.conengprac.2011.09.006
    [10] OHTSUKA T, FUJⅡ H A.Real-time optimization algorithm for nonlinear receding horizon control[J].Automatica, 1997, 33(6):11471154. http://www.sciencedirect.com/science/article/pii/S0005109897000058
    [11] PADHI R, KOTHARI M.Model predictive static programming:A computationally efficient technique for suboptimal control design[J].International Journal of Innovative Computing, Information and Control, 2009, 5(2):399-411.
    [12] OZA H B, PADHI R.Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles[J].Journal of Guidance, Control, and Dynamics, 2012, 35(1):153-164. doi: 10.2514/1.53647
    [13] YANG L, ZHOU H, CHEN W C.Application of linear gauss pseudospectral method in model predictive control[J].Acta Astronautica, 2014, 96(1):175-187. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0232284501
    [14] RAHMAN T, ZHOU H, YANG L, et al.Pseudospectral model predictive control for exo-atmospheric guidance[J].International Journal of Aeronautical and Space Sciences, 2015, 16(1):64-76. doi: 10.5139/IJASS.2015.16.1.64
    [15] YANG L, CHEN W C, LIU X M, et al.Robust entry guidance using multi-segment linear pseudospectral model predictive control[J].Journal of Systems Engineering and Electronics, 2017, 28(1):103-125. doi: 10.21629/JSEE.2017.01.13
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  330
  • HTML全文浏览量:  2
  • PDF下载量:  695
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-12-12
  • 录用日期:  2018-03-16
  • 刊出日期:  2018-10-20

目录

    /

    返回文章
    返回
    常见问答