留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热处理及测量方式对纵波声速评价材料硬度的影响

门平 董世运 闫世兴 康学良 李恩重

门平, 董世运, 闫世兴, 等 . 热处理及测量方式对纵波声速评价材料硬度的影响[J]. 北京航空航天大学学报, 2018, 44(11): 2312-2320. doi: 10.13700/j.bh.1001-5965.2018.0086
引用本文: 门平, 董世运, 闫世兴, 等 . 热处理及测量方式对纵波声速评价材料硬度的影响[J]. 北京航空航天大学学报, 2018, 44(11): 2312-2320. doi: 10.13700/j.bh.1001-5965.2018.0086
MEN Ping, DONG Shiyun, YAN Shixing, et al. Influence of heat treatment and measurement methods on material hardness evaluation by longitudinal wave velocity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2312-2320. doi: 10.13700/j.bh.1001-5965.2018.0086(in Chinese)
Citation: MEN Ping, DONG Shiyun, YAN Shixing, et al. Influence of heat treatment and measurement methods on material hardness evaluation by longitudinal wave velocity[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2312-2320. doi: 10.13700/j.bh.1001-5965.2018.0086(in Chinese)

热处理及测量方式对纵波声速评价材料硬度的影响

doi: 10.13700/j.bh.1001-5965.2018.0086
基金项目: 

国家重点研发计划 2016YFB1100205

国家重点研发计划 2017YFF0207905

国家自然科学基金 51705532

北京市科技专项 Z161100004916009

北京市科技计划 Z161100001516007

详细信息
    作者简介:

    门平  男,博士研究生。主要研究方向:超声检测技术、材料力学性能无损检测与评价

    董世运  男,博士,研究员,博士生导师。主要研究方向:表面工程、激光制造与再制造及其质量无损检测评价

    通讯作者:

    董世运, E-mail:syd422@sohu.com

  • 中图分类号: TG115.28;TH878

Influence of heat treatment and measurement methods on material hardness evaluation by longitudinal wave velocity

Funds: 

National Key R & D Program of China 2016YFB1100205

National Key R & D Program of China 2017YFF0207905

National Natural Science Foundation of China 51705532

the Beijing Major Science and Technology Projects Z161100004916009

the Beijing Municipal Science and Technology Projects Z161100001516007

More Information
  • 摘要:

    硬度是材料力学性能的重要指标之一,目前采用超声无损检测方法评价材料的硬度指标存在诸多挑战。通过搭建高精度声时测量系统,采用超声纵波脉冲反射回波法测量不同热处理45钢试件沿厚度方向的超声波传播声时,计算超声纵波声速。同时改变门信号的测量方式,研究不同热处理及门信号测量方式对超声纵波声速评价材料硬度的影响。建立材料硬度、微观组织以及超声纵波声速之间的映射关系,得到超声纵波声速评价45钢试件硬度指标的标定模型,并对标定模型进行验证。标定模型预测硬度误差满足工程应用误差10%的要求。

     

  • 图 1  材料力学性能指标-微观组织-无损检测信号特征参量之间的关系

    Figure 1.  Relationship among material mechanical property indices, microstructure and non-destructive testing signal characteristic parameters

    图 2  超声检测方法评价材料力学性能标定过程框图

    Figure 2.  Block diagram of calibration process of material mechanical property evaluation by ultrasonic testing method

    图 3  测量门信号与接收超声纵波信号位置(测量方法1)

    Figure 3.  Measured position of gate signal and received ultrasonic longitudinal wave signal (Measuring method 1)

    图 4  测量门信号与接收超声纵波信号位置(测量方法2)

    Figure 4.  Measured position of gate signal and received ultrasonic longitudinal wave signal (Measuring method 2)

    图 5  超声纵波检测系统框图

    Figure 5.  Block diagram of ultrasonic longitudinal wave testing system

    图 6  标定45钢试件不同热处理微观组织

    Figure 6.  Calibrated 45 steel specimens with different heat treated microstructures

    图 7  超声纵波探头幅频特性

    Figure 7.  Ultrasonic longitudinal wave probe amplitude-frequency characteristics

    图 8  超声纵波声时和声速随标定试件热处理方法的变化

    Figure 8.  Variation of ultrasonic longitudinal wave propagation time and velocity with calibrated specimen heat treatment system

    图 9  标定试件硬度与测量方法1和2所得超声纵波声速线性拟合

    Figure 9.  Linear fitting between calibrated specimen hardness and ultrasonic longitudinal wave velocity measured by measuring method 1 and 2

    图 10  不同热处理45钢试件X射线衍射图

    Figure 10.  X-ray diffraction patterns of different heat treated 45 steel specimens

    图 11  不同热处理45钢试件硬度随晶格畸变程度变化

    Figure 11.  Variation of hardness of different heat treated 45 steel specimens with lattice distortion degree

    图 12  不同热处理45钢试件超声纵波声速随晶格畸变程度变化

    Figure 12.  Variation of ultrasonic longitudinal wave velocity of different heat treated 45 steel specimens with lattice distortion degree

    表  1  标定45钢试件热处理方法及硬度

    Table  1.   Heat treatment methods and hardness of calibrated 45 steel specimens

    热处理方法 冷却方式 回火温度/℃ 保温时间/min 硬度/HBW
    A 炉冷 129
    N 空冷 155
    600T 空冷 600 30 192
    400T 空冷 400 30 340
    200T 空冷 200 30 489
    WQ 水冷 522
    下载: 导出CSV

    表  2  标定试件超声纵波声速(测量方法1)

    Table  2.   Calibrated specimen ultrasonic longitudinal wave velocity (Measuring method 1)

    热处理方法 d/mm 一次回波 二次回波 vL/(m·s-1)
    t1/μs Et1/μs t2/μs Et2/μs
    A 18.98 9.397 9 0.001 15.827 6 0.001 5 904
    N 18.99 9.391 7 0.001 15.830 1 0.008 5 899
    600T 18.98 9.373 4 0.002 15.827 0 0.003 5 882
    400T 18.99 9.351 3 0.004 15.814 1 0.005 5 876
    200T 18.98 9.335 4 0.003 15.828 5 0.005 5 846
    WQ 18.98 9.315 4 0.008 15.843 0 0.009 5 815
    下载: 导出CSV

    表  3  标定试件超声纵波声速(测量方法2)

    Table  3.   Calibrated specimen ultrasonic longitudinal wave velocity (Measuring method 2)

    热处理方法 d/mm t/μs Et/μs vL/(m·s-1)
    A 18.98 3.213 2 0.006 5 907
    N 18.99 3.217 8 0.009 5 901
    600T 18.98 3.224 3 0.003 5 886
    400T 18.99 3.233 0 0.005 5 873
    200T 18.98 3.243 8 0.005 5 851
    WQ 18.98 3.273 4 0.009 5 798
    下载: 导出CSV

    表  4  不同热处理45钢试件晶格畸变程度

    Table  4.   Degree of lattice distortion of different heat treated 45 steel specimens

    热处理方法 晶格畸变程度/%
    A 0
    N 0.033
    600T 0.094
    400T 0.168
    200T 0.369
    WQ 0.509
    下载: 导出CSV
  • [1] 蔡鹏, 程玉华, 谢驰, 等.超声波技术用于零件表面硬度无损检测的研究[J].工具技术, 2007, 41(2):85-89. doi: 10.3969/j.issn.1000-7008.2007.02.024

    CAI P, CHENG Y H, XIE C, et al.Research on non-destructive detection of part surface hardness with ultrasonic technology[J].Tool Engineering, 2007, 41(2):85-89(in Chinese). doi: 10.3969/j.issn.1000-7008.2007.02.024
    [2] 刘志军.金属基复合材料高温界面特性及耐磨性能研究[J].热加工工艺, 2016, 45(12):110-112. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016080300056444

    LIU Z J.High temperature interface properties and wear resistance of metal matrix composite[J].Hot Working Technology, 2016, 45(12):110-112(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016080300056444
    [3] BAO Y W, WANG W, ZHOU Y C.Investigation of the relationship between elastic modulus and hardness based on depth-sensing indentation measurements[J].Acta Materialia, 2004, 52(18):5397-5404. doi: 10.1016/j.actamat.2004.08.002
    [4] ZHU L N, XU B S, WANG H D, et al.Determination of hardness of plasma-sprayed FeCrBSi coating on steel substrate by nanoindentation[J].Materials Science & Engineering A, 2010, 528(1):425-428. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=3d113adb3a97ca5a6550898923fcc7ea
    [5] 萨殊利, 肖春燕, 朱衡君, 等.电涡流无损检测淬火钢轨踏面硬度定量分析[J].铁道学报, 2001, 23(3):33-36. doi: 10.3321/j.issn:1001-8360.2001.03.007

    SA S L, XIAO C Y, ZHU H J, et al.Quantitative analysis of quenched rail surface hardness by eddy current nondestructive testing[J].Journal of the China Railway Society, 2001, 23(3):33-36(in Chinese). doi: 10.3321/j.issn:1001-8360.2001.03.007
    [6] 付强, 李世波.金属材料几种常见硬度的区别与联系[J].山东化工, 2016, 45(6):70-72. doi: 10.3969/j.issn.1008-021X.2016.06.026

    FU Q, LI S B.Difference and contact of metal materials several common hardness[J].Shandong Chemical Industry, 2016, 45(6):70-72(in Chinese). doi: 10.3969/j.issn.1008-021X.2016.06.026
    [7] ZENG W, WANG H, TIAN G, et al.Detection of surface defects for longitudinal acoustic waves by a laser ultrasonic imaging technique[J].Optik-International Journal for Light and Electron Optics, 2016, 127(1):415-419. doi: 10.1016/j.ijleo.2015.09.175
    [8] 门平, 董世运, 康学良, 等.材料早期损伤的非线性超声诊断[J].仪器仪表学报, 2017, 38(5):1101-1118. doi: 10.3969/j.issn.0254-3087.2017.05.008

    MEN P, DONG S Y, KANG X L, et al.Material early damage diagnosis with nonlinear ultrasound[J].Chinese Journal of Scientific Instrument, 2017, 38(5):1101-1118(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.05.008
    [9] JIAO J, FAN Z, ZHONG F, et al.Application of ultrasonic methods for early detection of intergranular corrosion in austenitic stainless steel[J].Research in Nondestructive Evaluation, 2016, 27(4):193-203. doi: 10.1080/09349847.2015.1103922
    [10] CHEREPETSKAYA E B, KARABUTOV A A, MIRONOVA E A, et al.Contact laser-ultrasonic evaluation of residual stress[J].Applied Mechanics & Materials, 2016, 843(7):118-124. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.4028/www.scientific.net/AMM.843.118
    [11] LIU B, DONG S.Stress evaluation of laser cladding coating with critically refracted longitudinal wave based on cross correlation function[J].Applied Acoustics, 2016, 101(8):98-103. http://www.sciencedirect.com/science/article/pii/S0003682X15002388
    [12] FREITAS V L D A, ALBUQUERQUE V H C D, SILVA E D M, et al.Nondestructive characterization of microstructures and determination of elastic properties in plain carbon steel using ultrasonic measurements[J].Materials Science & Engineering A, 2010, 527(16):4431-4437. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ceeb5f5ae6b397088ceec38d90ab472e
    [13] YU Z, LIU C, ZHANG F, et al.Experimental study and finite element analysis based on equivalent load method for laser ultrasonic measurement of elastic constants[J].Ultrasonics, 2016, 69(3):243-247. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=a066aae617b63be1736dbd234f60ce0c
    [14] 邓雯, 杨建华, 张扬.基于孤立波的杨氏模量无损检测换能器研究[J].仪器仪表学报, 2017, 38(11):2762-2768. doi: 10.3969/j.issn.0254-3087.2017.11.018

    DENG W, YANG J H, ZHANG Y.HNSWs based transducers in measuring Young's modulus nondestructively[J].Chinese Journal of Scientific Instrument, 2017, 38(11):2762-2768(in Chinese). doi: 10.3969/j.issn.0254-3087.2017.11.018
    [15] 周玉.材料分析方法[M].北京:机械工业出版社, 2011:40-54.

    ZHOU Y.Material analysis method[M].Beijing:Machinery Industry Press, 2011:40-54(in Chinese).
    [16] ROSE J L.固体中的超声波[M].何存富, 吴斌, 王秀彦, 译.北京: 科学出版社, 2004: 242-247.

    ROSE J L.Ultrasonic waves in solid media[M].HE C F, WU B, WANG X Y, translated.Beijing: Science Press, 2004: 242-247(in Chinese).
  • 加载中
图(12) / 表(4)
计量
  • 文章访问数:  325
  • HTML全文浏览量:  2
  • PDF下载量:  441
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-02-08
  • 录用日期:  2018-05-25
  • 刊出日期:  2018-11-20

目录

    /

    返回文章
    返回
    常见问答