留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

MSCSG转子不平衡振动原理分析与建模

夏长峰 蔡远文 任元 王卫杰 樊亚洪 尹增愿

夏长峰, 蔡远文, 任元, 等 . MSCSG转子不平衡振动原理分析与建模[J]. 北京航空航天大学学报, 2018, 44(11): 2321-2328. doi: 10.13700/j.bh.1001-5965.2018.0044
引用本文: 夏长峰, 蔡远文, 任元, 等 . MSCSG转子不平衡振动原理分析与建模[J]. 北京航空航天大学学报, 2018, 44(11): 2321-2328. doi: 10.13700/j.bh.1001-5965.2018.0044
XIA Changfeng, CAI Yuanwen, REN Yuan, et al. Principle analysis and modeling of rotor imbalance vibration in magnetically suspended control and sensing gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2321-2328. doi: 10.13700/j.bh.1001-5965.2018.0044(in Chinese)
Citation: XIA Changfeng, CAI Yuanwen, REN Yuan, et al. Principle analysis and modeling of rotor imbalance vibration in magnetically suspended control and sensing gyroscope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(11): 2321-2328. doi: 10.13700/j.bh.1001-5965.2018.0044(in Chinese)

MSCSG转子不平衡振动原理分析与建模

doi: 10.13700/j.bh.1001-5965.2018.0044
基金项目: 

国家自然科学基金 51475472

国家自然科学基金 61403396

国家自然科学基金 51605489

详细信息
    作者简介:

    夏长峰  男,博士研究生。主要研究方向:磁悬浮控制敏感陀螺的测量与控制

    蔡远文  男,博士,教授。主要研究方向:航天器测试与发射

    任元  男,博士,副教授。主要研究方向:导航、制导与控制

    通讯作者:

    任元, E-mail:renyuan_823@aliyun.com

  • 中图分类号: V448.2

Principle analysis and modeling of rotor imbalance vibration in magnetically suspended control and sensing gyroscope

Funds: 

National Natural Science Foundation of China 51475472

National Natural Science Foundation of China 61403396

National Natural Science Foundation of China 51605489

More Information
  • 摘要:

    磁悬浮控制敏感陀螺(MSCSG)是一种新概念陀螺,采用洛伦兹力磁轴承为力矩器驱动转子径向偏转。针对MSCSG转子旋转过程中产生不平衡振动的问题,分析了不平衡振动产生原理,并建立了解析模型。首先,分析了MSCSG的工作原理。然后,确定了转子不平衡条件下转子几何轴与惯性轴间的几何解析关系;推导了转子不平衡振动力矩数学模型,并对不平衡扰动量的能观性进行了判定;建立了包含振动源的磁轴承-转子控制系统模型,对闭环系统的不平衡振动产生机理进行了分析,并对不同转速下不平衡振动的响应特性进行仿真,仿真结果验证了所提出模型的正确性。最后,根据转子不平衡振动的特点提出了对其进行抑制的要求,为实现MSCSG转子不平衡振动控制奠定了理论基础。

     

  • 图 1  MSCSG结构示意图

    Figure 1.  Structure diagram of MSCSG

    图 2  LFMB工作原理

    Figure 2.  Working principle of LFMB

    图 3  传感器探头配置及检测面示意图

    Figure 3.  Schematic diagram of sensor probe configuration and detection surface

    图 4  偏转角检测原理

    Figure 4.  Testing principle of deflection angle

    图 5  转子惯性轴与几何轴位置关系

    Figure 5.  Position relation between inertial axis and geometric axis of rotor

    图 6  转子不平衡条件下MSCSG转子偏转控制系统闭环结构

    Figure 6.  Closed-loop structure of rotor tilt control system in MSCSG considering rotor imbalance

    图 7  磁轴承-转子控制系统框图

    Figure 7.  Block diagram of magnetic bearing-rotor control system

    图 8  不平衡振动响应仿真结果

    Figure 8.  Simulation results of unbalance vibration response

    表  1  MSCSG系统参数

    Table  1.   Parameters of MSCSG system

    参数 数值
    Jz/(kg·m2) 0.016 6
    Jy/(kg·m2) 0.009 7
    ki 0.001
    ωD 240
    kh 0.001 5
    n 200
    l/m 0.115 8
    a2l 2 200 000
    a2h 92 100
    ls/m 0.078
    ka/(V·A-1) 0.22
    ωf/Hz 310
    Jx/(kg·m2) 0.009 7
    kp 15.1
    kd 3.2
    kl 0.001 5
    B/T 0.4
    lm/m 0.059
    a1l 2 400
    a1h 370
    ks/(V·m-1) 10 300
    δ/(°) 0.009
    ωa/Hz 240
    φ/(°) 10
    下载: 导出CSV
  • [1] 夏长峰, 蔡远文, 任元, 等.磁悬浮控制敏感陀螺转子前馈解耦内模控制[J].北京航空航天大学学报, 2018, 44(3):480-488. http://bhxb.buaa.edu.cn/CN/abstract/abstract14367.shtml

    XIA C F, CAI Y W, REN Y, et al.Feedforward decoupling and internal model control for rotor of magnetically suspended control and sensing gyroscope[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3):480-488(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract14367.shtml
    [2] 夏长峰, 蔡远文, 任元, 等.MSCSG转子系统的扩展双频Bode图稳定性分析方法[J].宇航学报, 2018, 39(2):168-176. http://d.old.wanfangdata.com.cn/Periodical/yhxb201802007

    XIA C F, CAI Y W, REN Y, et al.Stability analysis method with extended double-frequency Bode diagram for rotor of MSCSG[J].Journal of Astronautics, 2018, 39(2):168-176(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yhxb201802007
    [3] ZHENG S Q, LI H T, HAN B C, et al.Power consumption reduction for magnetic bearing systems during torque output of control moment gyros[J].IEEE Transactions on Power Electronics, 2017, 32(7):5752-5759. doi: 10.1109/TPEL.2016.2608660
    [4] HAN B C, ZHENG S Q, LI H T, et al.Weight-reduction design based on integrated radial-axial magnetic bearing of a large scale MSCMG for space station application[J].IEEE Transactions on Industrial Electronics, 2016, 64(3):2205-2214. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bbfd2e2df236433af9a46f5cf565e782
    [5] LIU X K, ZHAO H, YAO Y, et al.Modeling and analysis of micro-spacecraft attitude sensing with gyrowheel[J].Sensors, 2016, 16(8):1321-1328. doi: 10.3390/s16081321
    [6] FANG J C, ZHENG S Q, HAN B C.Attitude sensing and dynamic decoupling based on active magnetic bearing of MSDGCMG[J].IEEE Transactions on Instrumentation and Measurement, 2012, 61(2):338-348. doi: 10.1109/TIM.2011.2164289
    [7] REN Y, CHEN X C, CAI Y W, et al.Attitude-rate measurement and control integration using magnetically suspended control and sensitive gyroscopes[J].IEEE Transactions on Industrial Electronics, 2018, 65(6):4921-4932. doi: 10.1109/TIE.2017.2772161
    [8] ZHENG S Q, HAN B C, FENG R, et al.Vibration suppression control for AMB-supported motor driveline system using synchronous rotating frame transformation[J].IEEE Transactions on Industrial Electronics, 2015, 62(9):5700-5708. doi: 10.1109/TIE.2015.2407857
    [9] CHEN Q, LIU G, ZHENG S Q.Suppression of imbalance vibration for AMBs controlled driveline system using double-loop structure[J].Journal of Sound & Vibration, 2015, 337(2):1-13. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddad90af6193129b34ec25d0a3ed18e2
    [10] ZHENG S Q, FENG R.Feedforward compensation control of rotor imbalance for high-speed magnetically suspended centrifugal compressors using a novel adaptive notch filter[J].Journal of Sound & Vibration, 2016, 366(3):1-14. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=b89a58488d1edc1175c1b09b731a13e0
    [11] ZHOU J X, ZHENG S Q, HAN B C, et al.Effects of notch filters on imbalance rejection with heteropolar and homopolar magnetic bearings in a 30-kW 60000-rpm motor[J].IEEE Transactions on Industrial Electronics, 2017, 64(10):8033-8039. doi: 10.1109/TIE.2017.2694412
    [12] CHEN Q, LIU G, HAN B C.Unbalance vibration suppression for AMBs system using adaptive notch filter[J].Mechanical Systems and Signal Processing, 2017, 93(9):136-150. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=f33636d76f1b1109d1b7431e741250e5
    [13] WANG Y G, FANG J C, ZHENG S Q.A field balancing technique based on virtual trial-weights method for a magnetically levitated flexible rotor[J].Journal of Engineering for Gas Turbines & Power, 2014, 136(9):1-7. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=7f8266e0b0a055e5e8be24a1a0d85a99
    [14] TANG E Q, HAN B C, ZHANG Y.Optimum compensator design for the flexible rotor in magnetically suspended motor to pass the first bending critical speed[J].IEEE Transactions on Industrial Electronics, 2016, 63(1):343-354. doi: 10.1109/TIE.2015.2472534
    [15] FANG J C, XU X B, TANG J Q, et al.Adaptive complete suppression of imbalance vibration in AMB systems using gain phase modifier[J].Journal of Sound & Vibration, 2013, 332(24):6203-6215. http://www.sciencedirect.com/science/article/pii/S0022460X1300597X
    [16] XU X B, FANG J C, LI H T, et al.Active suppression of imbalance vibration in the magnetically suspended control moment gyro[J].Journal of Vibration and Control, 2015, 21(5):990-998. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=10.1177/1077546315602153
    [17] PENG C, FAN Y H, HUANG Z Y, et al.Frequency-varying synchronous micro-vibration suppression for a MSFW with application of small-gain theorem[J].Mechanical Systems and Signal Processing, 2016, 82(6):432-447. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=0c37e5be1ad23656cf861ceae3574a1a
    [18] CUI P L, WANG Q R, ZHANG G X, et al.Hybrid fractional repetitive control for magnetically suspended rotor systems[J].IEEE Transactions on Industrial Electronics, 2017, 65(4):3491-3495. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=907ca93819eb17f00883b9bace965c5d
    [19] 崔培玲, 盖玉欢, 李海涛.基于复合前馈补偿的混合磁悬浮CMG转子主动振动控制[J].振动与冲击, 2015, 34(22):162-166. http://d.old.wanfangdata.com.cn/Periodical/zdycj201522028

    CUI P L, GAI Y H, LI H T.Active vibration control of an active-passive hybrid magnetically suspended rotor based on composite feedforward compensation method[J].Journal of Vibration and Shock, 2015, 34(22):162-166(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/zdycj201522028
    [20] 刘超, 刘刚, 赵光再.主被动磁悬浮高速转子系统的自动平衡控制[J].光学精密工程, 2015, 23(3):714-722. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201503015

    LIU C, LIU G, ZHAO G Z.Autobalancing control of high-speed rotor suspended by active-passive hybrid magnetic bearings[J].Optics and Precision Engineering, 2015, 23(3):714-722(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201503015
    [21] YU Y J, YANG Z H, HAN B C, et al.Active vibration control of magnetically suspended wheel using active shaft deflection[J].IEEE Transactions on Industrial Electronics, 2017, 64(8):6528-6533. doi: 10.1109/TIE.2017.2682786
    [22] HE Y, SHI L, SHI Z G, et al.Unbalance compensation of a full scale test rig designed for HTR-10GT:A frequency-domain approach based on iterative learning control[J].Science and Technology and Nuclear Installations, 2017, 17(1):2-7. https://core.ac.uk/display/90900722
    [23] 房建成, 任元.磁悬浮控制力矩陀螺技术[M].北京:国防工业出版社, 2014:107-120.

    FANG J C, REN Y.Magnetically suspended control momentum gyroscope technology[M].Beijing:National Defense Industry Press, 2014:107-120(in Chinese).
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  428
  • HTML全文浏览量:  12
  • PDF下载量:  499
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-01-18
  • 录用日期:  2018-03-02
  • 刊出日期:  2018-11-20

目录

    /

    返回文章
    返回
    常见问答