留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳卫星电磁对接机构技术

慕忠成 叶东 吴树范

慕忠成, 叶东, 吴树范等 . 纳卫星电磁对接机构技术[J]. 北京航空航天大学学报, 2018, 44(12): 2644-2650. doi: 10.13700/j.bh.1001-5965.2018.0346
引用本文: 慕忠成, 叶东, 吴树范等 . 纳卫星电磁对接机构技术[J]. 北京航空航天大学学报, 2018, 44(12): 2644-2650. doi: 10.13700/j.bh.1001-5965.2018.0346
MU Zhongcheng, YE Dong, WU Shufanet al. Technology of electromagnetic docking mechanism using nanosatellites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2644-2650. doi: 10.13700/j.bh.1001-5965.2018.0346(in Chinese)
Citation: MU Zhongcheng, YE Dong, WU Shufanet al. Technology of electromagnetic docking mechanism using nanosatellites[J]. Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(12): 2644-2650. doi: 10.13700/j.bh.1001-5965.2018.0346(in Chinese)

纳卫星电磁对接机构技术

doi: 10.13700/j.bh.1001-5965.2018.0346
基金项目: 

上海市青年科技英才扬帆计划 SHKW15YF01

中国科学院国防科技创新基金 Y423931262

详细信息
    作者简介:

    慕忠成  男, 博士, 助理研究员。主要研究方向:微纳卫星系统设计、微纳卫星结构设计

    吴树范  男, 博士, 教授, 博士生导师。主要研究方向:微纳卫星系统设计、导航制导与控制以及空间技术与应用

    通讯作者:

    吴树范, E-mail: shufan.wu@sjtu.edu.cn

  • 中图分类号: V221+.3;TB553

Technology of electromagnetic docking mechanism using nanosatellites

Funds: 

Shanghai Sailing Program SHKW15YF01

CAS National Defense Science and Technology Innovation Fund of CAS Y423931262

More Information
  • 摘要:

    在轨服务是未来卫星主要发展趋势之一,在轨软件重构和硬件重构技术是其主要核心技术。基于此,首先创新移植电磁原理和"笔帽式"锁紧原理,提出了一种适用于立方体纳卫星的1U微型电磁对接硬件重构设计方案。然后,基于所设计的电磁对接机构,通过电磁力和力矩精确模型和远场模型的比较分析,明确了远场模型适用范围为对接距离大于0.1 m。最后,利用数值仿真方法,分析得到单个线圈和含铁芯的通电螺线管比值约在10-8~10-4量级,为远场模型的修正提供参考。

     

  • 图 1  螺线管电磁铁设计参数获取过程

    Figure 1.  Gaining process of solenoid electromagnet design parameters

    图 2  含铁芯的螺线管电磁铁

    Figure 2.  Solenoid electromagnet with iron core

    图 3  锁紧机构示意图

    Figure 3.  Schematic diagram of locking mechanism

    图 4  对接锁紧过程

    Figure 4.  Docking locking process

    图 5  自由度约束设计

    Figure 5.  Freedom degree constraint design

    图 6  1U电磁对接机构实物图

    Figure 6.  Picture for 1U electromagnetic docking mechanism

    图 7  通电线圈与通电螺线管模型

    Figure 7.  Electrified coil and solenoid model

    图 8  通电螺线管与单个线圈轴线上磁场比值

    Figure 8.  Magnetic field ratio between electrified solenoid and single coil axis

    图 9  电磁对接机构空间位置示意图

    Figure 9.  Schematic diagram of spatial position for electromagnetic docking mechanism

    图 10  电磁力强度误差与距离及角度的关系

    Figure 10.  Change of strength error of electromagnetic force with distance and angle

    图 11  电磁力角度误差与距离及角度的关系

    Figure 11.  Change of angle error of electromagnetic force with distance and angle

    图 12  电磁力矩强度误差与距离及角度的关系

    Figure 12.  Change of strength error of electromagnetic moment with distance and angle

    图 13  电磁力矩角度误差与距离及角度的关系

    Figure 13.  Change of angle error of electromagnetic moment with distance and angle

    图 14  2种螺线管Maxwell 3D仿真模型

    Figure 14.  Two kinds of Maxwell solenoid 3D simulation model

    图 15  单一螺线管和含铁芯螺线管轴线上磁感应强度分布

    Figure 15.  Magnetic induction intensity distribution in axial direction for electrified solenoid with single solenoid and iron core

    图 16  单个线圈与通电螺线管磁感应强度比较分析

    Figure 16.  Magnetic induction intensity comparison analysis between single coil and electrified solenoid

  • [1] WOELLERT K, EHRENFREUND P, RICCO A J, et al.Cubesat:Cost-effective science and technology platforms for emerging and developing nations[J].Advances in Space Research, 2011, 47(4):663-684. doi: 10.1016/j.asr.2010.10.009
    [2] SELVA D, KREJCI D.A survey and assessment of the capabilities of Cubesats for earth observation[J].Acta Astronautica, 2012, 74(27):50-68. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ea7d57a62b2ed444e063e6fcc4152a23
    [3] SHIMMIN R, SCHALKWYCK J, PEREZ A D, et al.Small spacecraft state of the art report 2015[C]//NASA Technical Memorandum.Washington, D.C: NASA, 2016.
    [4] SCHOL Z, JUANG J N.Toward open source CubeSat design[J].Acta Astronautica, 2015, 115:384-392. doi: 10.1016/j.actaastro.2015.06.005
    [5] 苏瑞丰, 张科科, 宋海伟.甚小型卫星发展综述[J].航天器工程, 2012, 22(6):104-111. http://d.old.wanfangdata.com.cn/Periodical/htqgc201306020

    SU R F, ZHANG K K, SONG H W.Summarization of very small satellite development[J].Spacecraft Engineering, 2012, 22(6):104-111(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/htqgc201306020
    [6] KONG E M C, KWON D W, SCHWEIGHART S A, et al.Electromagnetic formation flight for multisatellite arrays[J].Journal of Spacecraft and Rockets, 2004, 41(4):659-666. doi: 10.2514/1.2172
    [7] MILLER D W, SEDWICK R J, KONG E M C, et al.Electromagnetic formation flight for sparse aperture telescopes[C]//Aerospace Conference Proceedings.Piscataway, NJ: IEEE Press, 2002: 729-742. http://www.researchgate.net/publication/3968657_Electromagnetic_formation_flight_for_sparse_aperture_telescopes
    [8] FEHSE W.Automated rendezvous and docking of spacecraft[M].Cambridge:Cambridge University Press, 2003:200-201.
    [9] RINGELBERG J.Docking assembly techniques and challenges[C]//AIAA Space Conference & Exposition.Reston: AIAA, 2007: 1-5.
    [10] JOSEPH P S.Dynamics of reconfigurable multibody space systems connected by magnetic flux pinning[D].New York: Cornell University, 2011: 4-10.
    [11] 朱仁璋, 王鸿芳, 丛云天, 等.中外交会对接技术比较研究[J].航天器工程, 2013, 22(3):8-15. doi: 10.3969/j.issn.1673-8748.2013.03.002

    ZHU R Z, WANG H F, CONG Y T, et al.Comparative study of chinese and foreign rendezvous and docking technologies[J].Spacecraft Engineering, 2013, 22(3):8-15(in Chinese). doi: 10.3969/j.issn.1673-8748.2013.03.002
    [12] 张元文, 杨乐平.空间电磁对接控制问题[J].控制理论与应用, 2010, 27(8):1069-1074. http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201008015

    ZHANG Y W, YANG L P.The control of spatial electromagnetic docking[J].Control Theory & Applications, 2010, 27(8):1069-1074(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/kzllyyy201008015
    [13] ZHANG Y, YANG L, ZHU Y, et al.Self-docking analysis and velocity-aimed control for spacecraft electromagnetic docking[J].Advances in Space Research, 2016, 57(11):2314-2325. doi: 10.1016/j.asr.2016.03.022
    [14] 张三慧.大学物理学-电磁学[M].北京:清华大学出版社, 1999:120-130.

    ZHANG S H.University physics-electromagnetism[M].Beijing:Tsinghua University Press, 1999:120-130(in Chinese).
    [15] 张元文, 杨乐平.空间电磁对接的非线性控制[J].控制理论与应用, 2011, 28(8):1181-1186. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201102740789

    ZHANG Y W, YANG L P.Nonlinear control of space electromagnetic docking[J].Control Theory & Applications, 2011, 28(8):1181-1186(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201102740789
  • 加载中
图(16)
计量
  • 文章访问数:  385
  • HTML全文浏览量:  6
  • PDF下载量:  353
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-06-11
  • 录用日期:  2018-09-03
  • 刊出日期:  2018-12-20

目录

    /

    返回文章
    返回
    常见问答