留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速运载器燃油热管理系统优化

庞丽萍 邹凌宇 阿嵘 杨晓东 范俊

庞丽萍, 邹凌宇, 阿嵘, 等 . 高速运载器燃油热管理系统优化[J]. 北京航空航天大学学报, 2019, 45(2): 252-258. doi: 10.13700/j.bh.1001-5965.2018.0302
引用本文: 庞丽萍, 邹凌宇, 阿嵘, 等 . 高速运载器燃油热管理系统优化[J]. 北京航空航天大学学报, 2019, 45(2): 252-258. doi: 10.13700/j.bh.1001-5965.2018.0302
PANG Liping, ZOU Lingyu, A Rong, et al. Optimization of fuel heat management system for high-speed aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 252-258. doi: 10.13700/j.bh.1001-5965.2018.0302(in Chinese)
Citation: PANG Liping, ZOU Lingyu, A Rong, et al. Optimization of fuel heat management system for high-speed aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(2): 252-258. doi: 10.13700/j.bh.1001-5965.2018.0302(in Chinese)

高速运载器燃油热管理系统优化

doi: 10.13700/j.bh.1001-5965.2018.0302
基金项目: 

国家重点研发计划 2017YFB1201100

详细信息
    作者简介:

    庞丽萍 女, 博士, 教授。主要研究方向:飞行器环境控制

    邹凌宇 男, 硕士研究生。主要研究方向:飞行器环境控制

    通讯作者:

    庞丽萍, E-mail: pangliping@buaa.edu.cn

  • 中图分类号: V245.3

Optimization of fuel heat management system for high-speed aircraft

Funds: 

National Key R & D Program of China 2017YFB1201100

More Information
  • 摘要:

    燃油热管理系统设计随着运载器多电化与机载高能电子设备的发展已经得到高度重视,其中燃油的热承载能力是最关键因素。针对喷气推进式高速运载器,提出了一种大范围、多任务的燃油热管理系统多目标优化配置方法,其以热沉利用率最高和燃油质量代偿损失最小为目标函数,以循环回路的燃油最大质量流量、冷却水携带量和机载热负荷发热量为优化变量,采用改进的遗传算法NSGA-Ⅱ,在不同飞行任务规划下进行双目标优化设计,所获得的目标函数Pareto最优解集,满足预期的燃油热管理系统模式选择原则,且通过分析优化变量与优化目标间的相关性,可以量化燃油热管理系统优化配置准则与可达到的最小燃油质量代偿损失,可应用于支持多热沉重构的机载高效燃油热管理系统。

     

  • 图 1  高速运载器燃油热管理系统架构

    Figure 1.  Architecture of fuel heat management system for high-speed aircraft

    图 2  多目标优化配置可行解的目标值空间

    Figure 2.  Target value space of optimal configuration of feasible solutions of multiple target

    图 3  燃油最大质量流量与优化目标之间的关系

    Figure 3.  Relationship between maximum mass flow rate of fuel and optimization objective

    图 4  冷却水的携带量与优化目标之间的关系

    Figure 4.  Relationship between cooling water carrying capacity and optimization objective

    图 5  机载热负荷发热量与优化目标之间的关系

    Figure 5.  Relationship between airborne heat load and optimization objective

    图 6  燃油热管理系统参数优化配置方案

    Figure 6.  Parameter optimal configuration scheme of fuel heat management system

    表  1  燃油热管理系统多目标优化配置仿真参数

    Table  1.   Simulation parameters for multi-objective optimal configuration of fuel heat management system

    参数 数值
    仿真时间τdesign/s 4 200
    仿真步长Δτ/s 2
    升阻比K 4.62
    油箱侧壁面积A1/m2 94.5
    油箱底面面积A2/m2 46.25
    燃油泵增压ΔP/Pa 1 000
    油箱壁面发射率ε 0.9
    油箱外壁面厚度δ3/mm 1.2
    燃油初始质量m0/kg 23 560
    燃油初始温度T0/℃ 20
    冷却水初始温度Tw, 0/℃ 20
    冷却水饱和温度Tsat/℃ 60
    燃油泵效率η 0.8
    油箱内壁面厚度δ1/mm 1.2
    下载: 导出CSV

    表  2  NSGA-Ⅱ算法参数设定

    Table  2.   NSGA-Ⅱ algorithm parameter setting

    参数 设定值
    种群个数 10
    种群代数 100
    交叉概率 0.9
    实数向量变异概率 1.0
    二进制字符串变异概率 1.0
    实数交叉分配指数 20
    实数变异分配指数 20
    下载: 导出CSV
  • [1] MAHEFKEY T, YERKES K, DONOVAN B, et al.Thermal management challenges for future military aircraft power systems[C]//Power Systems Conference.Warrendale, PA: SAE International, 2004: 3204.
    [2] VAN GRIETHUYSEN V J, GLICKSTEIN M R, PETLEY D H, et al.High-speed flight thermal management[M]//MURTHY S N B, CURRAN E T.Developments in high-speed vehicle propulsion.Reston: AIAA, 1996, 165: 517-579.
    [3] DOOLEY M, LUI N, NEWMAN R, et al.Aircraft thermal managementheat sink challenge[C]//SAE 2014 Aerospace Systems and Technology Conference.Warrendale, PA: SAE International, 2014: 2193.
    [4] GANEV E, KOERNER M.Power and thermal management for future aircraft[C]//SAE 2013 AeroTech Congress & Exhibition. Warrendale, PA: SAE International, 2013: 2273.
    [5] FISCHER A.Design of a fuel thermal management system for long range air vehicles: AIAA-2005-5647[R].Reston: AIAA, 2005.
    [6] YU S, GANEV E.Next generation power and thermal management system[J].SAE International Journal of Aerospace, 2009, 1(1):1107-1121. http://d.old.wanfangdata.com.cn/Periodical/hkkxjs201508002
    [7] DOOLEY M, LUI C, NEWMAN R.Efficient propulsion, power, and thermal management integration[C]//49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference.Reston: AIAA, 2013: 1-8.
    [8] SPROUSE J.F-22 environmental control/thermal management fluid transport optimization[C]//30th Internationnal Conference on Environmental Systems.Warrendale, PA: SAE International, 2000: 2266.
    [9] 高峰, 袁修干.高性能战斗机燃油热管理系统[J].北京航空航天大学学报, 2009, 35(11):1353-1356. http://bhxb.buaa.edu.cn/CN/abstract/abstract8704.shtml

    GAO F, YUAN X G.Fuel thermal management system of high performance fighter aircraft[J].Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(11):1353-1356(in Chinese). http://bhxb.buaa.edu.cn/CN/abstract/abstract8704.shtml
    [10] BLACKBIRD H, FLIGHT A S. SR-71 flight manual[EB/OL].SR-71 Online, 2001: 1-57[2001-12-11].https://www.sr-71.org/black-bird/manual.
    [11] EDWARDS T.Liquid fuels and propellants for aerospace propulsion:1903-2003[J].Journal of Propulsion and Power, 2003, 19(6):1089-1107. doi: 10.2514/2.6946
    [12] LAMM F P, VANDERSPURT T H.Catalytic fuel deoxy-genation system: US20060196174[P].2006-09-07.
    [13] MORRIS R, MILLER J, LIMAYE S.Fuel deoxygenation and aircraft thermal management[C]//International Energy Conversion Engineering Conference and Exhibit. Reston: AIAA, 2006: 26-29.
    [14] RHEAUME J, CORDATOS H.Fuel deoxygenation systems: US 20180016025[P].2018-01-18.
    [15] LETLOW J T, JENKINS L C.Development of an integrated environmental control system[C]//International Conference on Environmental Systems.Warrendale, PA: SAE International, 1998: 981544.
    [16] DOMAN D B.Fuel flow topology and control for extending aircraft thermal endurance[J].Journal of Thermophysics and Heat Transfer, 2018, 32(1):35-50.
    [17] ROUKIS J G, BOCCHICCHIO R L.The performance of the water bubbler heat sink for the EF-111 aircraft[C]//ASME 7th Intersociety Conference on Environmental Systems.New York: ASME, 1977: 1-5.
    [18] HARRISON W E, BINNS K E, ANDERSON S D, et al.High heat sink fuels for improved aircraft thermal management[C]//International Conference on Environmental Systems.Warrendale, PA: SAE International, 1993: 932084.
    [19] HO Y H, LIN T, HILL B, et al.Thermal benefits of advanced integrated fuel system using JP-8+100 fuel[C]//World Aviation Congress.Warrendale, PA: SAE International, 1997: 975507.
    [20] DEB K, PRATAP A, AGARWAL S, et al.A fast and elitist multiobjective genetic algorithm:NSGA-Ⅱ[J].IEEE Transactions on Evolutionary Computation, 2002, 6(2):182-197. doi: 10.1109-4235.996017/
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  340
  • HTML全文浏览量:  3
  • PDF下载量:  308
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-05-28
  • 录用日期:  2018-08-24
  • 刊出日期:  2019-02-20

目录

    /

    返回文章
    返回
    常见问答