留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于CUDA的超声二维声场EFIT仿真

宋波 李威 廉国选

宋波, 李威, 廉国选等 . 基于CUDA的超声二维声场EFIT仿真[J]. 北京航空航天大学学报, 2019, 45(7): 1322-1328. doi: 10.13700/j.bh.1001-5965.2018.0675
引用本文: 宋波, 李威, 廉国选等 . 基于CUDA的超声二维声场EFIT仿真[J]. 北京航空航天大学学报, 2019, 45(7): 1322-1328. doi: 10.13700/j.bh.1001-5965.2018.0675
SONG Bo, LI Wei, LIAN Guoxuanet al. EFIT simulation of 2D ultrasonic sound field based on CUDA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1322-1328. doi: 10.13700/j.bh.1001-5965.2018.0675(in Chinese)
Citation: SONG Bo, LI Wei, LIAN Guoxuanet al. EFIT simulation of 2D ultrasonic sound field based on CUDA[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(7): 1322-1328. doi: 10.13700/j.bh.1001-5965.2018.0675(in Chinese)

基于CUDA的超声二维声场EFIT仿真

doi: 10.13700/j.bh.1001-5965.2018.0675
基金项目: 

国家自然科学基金 11504403

详细信息
    作者简介:

    宋波 男, 硕士, 副研究员。主要研究方向:超声计算成像与检测应用

    通讯作者:

    宋波, E-mail: songbo@mail.ioa.ac.cn

  • 中图分类号: TP391.9;O429

EFIT simulation of 2D ultrasonic sound field based on CUDA

Funds: 

National Natural Science Foundation of China 11504403

More Information
  • 摘要:

    随着图形处理器(GPU)的快速发展,基于计算设备统一构架(CUDA)可以方便地将并行计算技术应用于超声声场数值仿真计算,极大地提升计算效率。阐述了弹性动力学有限积分算法(EFIT)的原理,在采用CPU实现带吸收边界的钢材料二维点源激励声场仿真的基础上,基于GPU实现了仿真模型的并行计算,介绍了GPU程序的设计流程和参数优化方法,包括纹理内存使用、吸收边界优化和数据传输优化。对比了相同条件下CPU和GPU仿真计算的耗时和平均计算效率,定量分析了GPU对于EFIT模型效率的提升。比对结果表明,EFIT具有良好的并行计算条件,采用并行计算方法能够有效提升模型计算速度,对于复杂声场仿真应用具有广阔的应用前景。

     

  • 图 1  单个计算单元内速度与应力的分布

    Figure 1.  Velocity and stress distribution in single calculation unit

    图 2  未设置吸收边界的声场分布

    Figure 2.  Sound field distribution without absorption boundary

    图 3  设置吸收边界的声场分布

    Figure 3.  Sound field distribution with absorption boundary

    图 4  并行计算流程

    Figure 4.  Flowchart of parallel calculation

    图 5  纹理内存线程寻址示意图

    Figure 5.  Schematic diagram of texture memory thread addressing

    图 6  GPU与CPU计算结果对比

    Figure 6.  Comparison of GPU and CPU computing results

    图 7  GPU与CPU计算耗时对比

    Figure 7.  Comparison of computing time consumption of GPU and CPU

    图 8  GPU与CPU平均每秒迭代次数对比

    Figure 8.  Comparison of average iteration times in one second of GPU and CPU

  • [1] 徐娜, 李洋, 周正干, 等.FDTD方法的改进及在超声波声场计算中的应用[J].北京航空航天大学学报, 2013, 39(1):78-82. https://bhxb.buaa.edu.cn/CN/abstract/abstract12507.shtml

    XU N, LI Y, ZHOU Z G, et al.Improvement of finite difference time domain method and its application to calculation of ultrasonic sound fields[J].Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(1):78-82(in Chinese). https://bhxb.buaa.edu.cn/CN/abstract/abstract12507.shtml
    [2] FELLINGER P, MARKLEIN R, LANGENBERG K J, et al.Numerical modeling of elastic wave propagation and scattering with EFIT-Elastodynamic finite integration technique[J].Wave Motion, 1995, 21:47-66. doi: 10.1016/0165-2125(94)00040-C
    [3] 张霞, 何兴无.CUDA平台下的超声弹性成像并行处理算法[J].计算机与数字工程, 2012, 40(9):113-116. doi: 10.3969/j.issn.1672-9722.2012.09.038

    ZHANG X, HE X W.A Parallel algorithm of ultrasound strainimaging based on CUDA[J].Computer & Digital Engineering, 2012, 40(9):113-116(in Chinese). doi: 10.3969/j.issn.1672-9722.2012.09.038
    [4] 贾春刚, 郭立新, 刘伟.基于GPU的并行FDTD方法在二维粗糙面散射中的应用[J].电波科学学报, 2016, 31(4):683-687. http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201604010

    JIA C G, GUO L X, LIU W.GPU-based FDTD method for analysis of electromagnetic scattering from a 2D rough surface[J].Chinese Journal of Radio Science, 2016, 31(4):683-687(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dbkxxb201604010
    [5] 付小波, 马中高, 余嘉顺, 等.基于多图形处理单元加速的各向异性弹性波正演模拟[J].科学技术与工程, 2018, 18(11):16-22. doi: 10.3969/j.issn.1671-1815.2018.11.002

    FU X B, MA Z G, YU J S, et al.Anisotropic elastic wave forward modeling based on multiple graphics processing unit[J].Science Technology and Engineering, 2018, 18(11):16-22(in Chinese). doi: 10.3969/j.issn.1671-1815.2018.11.002
    [6] 杨尚琴.地震正演数值模拟仿真计算的并行优化设计方法[J].地球物理学进展, 2017, 32(3):1290-1296. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201703046

    YANG S Q. Parallel optimization design method for seismic forward modeling numerical simulation calculation[J].Progress in Geophysics, 2017, 32(3):1290-1296(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201703046
    [7] FELLINGER F, LANGENBERG K J.Numerical techniques for elastic wave propagation and scattering[C]//Proceedings of the IUTAM Symposium on Elastic Wave Propagation and Ultrasonic Evaluation, 1990: 81-86.
    [8] SCHUBERT F.Numerical time-domain modeling of linear and nonlinear ultrasonic wave propagation using finite integration techniques-Theory and applications[J].Ultrasonics, 2004, 42(1-9):221-229. doi: 10.1016/j.ultras.2004.01.013
    [9] 丁辉.计算超声学——声场分析及应用[M].北京:科学出版社, 2010:33-36.

    DING H.Computational ultrasonics-Analysis and application of ultrasonic fiels[M].Beijing:Science Press, 2010:33-36(in Chinese).
    [10] 余涛.超声波在混凝土中传播的数值模拟[D].长沙: 中南大学, 2013: 4-9. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2426440

    YU T.Numerical simulation of ultrasonic wave propagation in concrete[D].Changsha: Central South University, 2013: 4-9(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y2426440
    [11] BERENGER J.A perfectly matched layer for the absorption of electromagnetic waves[J].Journal of Computational Physics, 1994, 114(2):185-200. doi: 10.1006/jcph.1994.1159
    [12] 廉西猛, 单联瑜, 隋志强, 等.地震正演数值模拟完全匹配层吸收边界条件研究综述[J].地球物理学进展, 2015, 30(4):1725-1733. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201504027

    LIAN X M, SHAN L Y, SUI Z Q, et al.An overview of research on perfectly matched layers absorbing boundary condition of seismic forward numerical simulation[J].Progress in Geophysics, 2015, 30(4):1725-1733(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dqwlxjz201504027
    [13] 刘洋.波动方程时空域有限差分数值解及吸收边界条件研究进展[J].石油地球物理勘探, 2014, 49(1):35-46. http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt201401003

    LIU Y.The review of finite difference numerical solution for wave equation in time domain and obsorption boundary conditions[J].Oil Geophysical Prospecting, 2014, 49(1):35-46(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/sydqwlkt201401003
    [14] 秦臻, 任培罡, 姚姚, 等.弹性波正演模拟中PML吸收边界条件的改进[J].地球科学——中国地质大学学报, 2009, 34(4):658-664. http://d.old.wanfangdata.com.cn/Periodical/dqkx200904012

    QIN Z, REN P G, YAO Y, et al.Improvement of PML absorbing boundary conditions in elastic wave forward modeling[J].Earth Science-Journal of China University of Geosciences, 2009, 34(4):658-664(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/dqkx200904012
    [15] 卢风顺, 宋君强, 银福康, 等.CPU/GPU协同并行计算研究综述[J].计算机科学, 2011, 38(3):5-9. doi: 10.3969/j.issn.1002-137X.2011.03.002

    LU F S, SONG J Q, YIN F K, et al.Survey of CPU/GPU synergetic parallel computing[J].Computer Science, 2011, 38(3):5-9(in Chinese). doi: 10.3969/j.issn.1002-137X.2011.03.002
    [16] SANDERS J, KANDROT E.GPU高性能编程CUDA实战[M].聂雪军, 等, 译.北京: 机械工业出版社, 2011: 84-100.

    SANDERS J, KANDROT E.CUDA by example——An introduction to general-purpose GPU programming[M].NIE X J, et al., translated.Beijing: China Machine Press, 2011: 84-100(in Chinese).
    [17] 方民权, 张卫民, 方建滨, 等.GPU编程与优化:大众高性能计算[M].北京:清华大学出版社, 2016:273-276.

    FANG M Q, ZHANG W M, FANG J B, et al.GPU programming and code optimization:High performance computing for the masses[M].Beijing:Tsinghua University Press, 2016:273-276(in Chinese).
  • 加载中
图(8)
计量
  • 文章访问数:  494
  • HTML全文浏览量:  6
  • PDF下载量:  673
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-11-20
  • 录用日期:  2019-02-17
  • 刊出日期:  2019-07-20

目录

    /

    返回文章
    返回
    常见问答