留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声激励薄液膜Faraday波形成机理

高国富 李康 李瑜 向道辉 赵波

高国富, 李康, 李瑜, 等 . 超声激励薄液膜Faraday波形成机理[J]. 北京航空航天大学学报, 2019, 45(8): 1582-1588. doi: 10.13700/j.bh.1001-5965.2018.0710
引用本文: 高国富, 李康, 李瑜, 等 . 超声激励薄液膜Faraday波形成机理[J]. 北京航空航天大学学报, 2019, 45(8): 1582-1588. doi: 10.13700/j.bh.1001-5965.2018.0710
GAO Guofu, LI Kang, LI Yu, et al. Formation mechanism of Faraday wave on thin liquid film excited by ultrasonic vibration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1582-1588. doi: 10.13700/j.bh.1001-5965.2018.0710(in Chinese)
Citation: GAO Guofu, LI Kang, LI Yu, et al. Formation mechanism of Faraday wave on thin liquid film excited by ultrasonic vibration[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(8): 1582-1588. doi: 10.13700/j.bh.1001-5965.2018.0710(in Chinese)

超声激励薄液膜Faraday波形成机理

doi: 10.13700/j.bh.1001-5965.2018.0710
基金项目: 

国家自然科学基金 51575453

详细信息
    作者简介:

    高国富  男, 博士, 教授, 博士生导师。主要研究方向:精密超精密加工技术、特种加工技术

    李康   男, 硕士研究生。主要研究方向:精密超精密加工技术

    李瑜  男, 博士, 讲师, 硕士生导师。主要研究方向:生物3D打印和先进制造技术

    向道辉  男, 博士, 教授, 博士生导师。主要研究方向:精密超精密加工技术、特种加工

    赵波   男, 博士, 教授, 博士生导师。主要研究方向:精密超精密加工技术、特种加工

    通讯作者:

    高国富, E-mail: gaogf@hpu.edu.cn

  • 中图分类号: O426.9

Formation mechanism of Faraday wave on thin liquid film excited by ultrasonic vibration

Funds: 

National Natural Science Foundation of China 51575453

More Information
  • 摘要:

    针对35 kHz超声激励薄液膜形成的Faraday波,采用实验和有限元仿真,对Faraday波的形成机理进行探究。建立超声激励下的两相流计算模型,采用计算流体力学(CFD)方法对Faraday波的形成过程进行有限元仿真,通过分析相图和流线图,探讨Faraday波的形成机理,得到Faraday波的振动频率约为超声激励频率的1/2。液体惯性的存在,导致超声激励与液体表面波存在不断变化的相位差,相位差变化周期约等于2个超声激励周期。通过35 kHz超声激励薄液膜实验,在薄液膜表面观察到排列整齐的Faraday波图案,通过测量Faraday波的波长,得出实验获得的Faraday波频率约为超声激励频率的1/2,与有限元仿真结果一致。

     

  • 图 1  计算模型

    Figure 1.  Calculation model

    图 2  超声激励频率35kHz、超声激励振幅8μm条件下不同时刻的Faraday波相图

    Figure 2.  Phase diagram of Faraday wave at different moments under ultrasonic excitation frequency 35kHz and ultrasonic excitation amplitude 8μm

    图 3  超声激励频率35kHz条件下不同超声激励振幅的Faraday波相图

    Figure 3.  Phase diagram of Faraday wave under different ultrasonic excitation amplitudes at ultrasonic excitation frequency 35kHz

    图 4  超声激励频率35kHz、超声激励振幅8μm条件下1.9×10-4s时刻的Faraday波相图

    Figure 4.  Phase diagram of Faraday wave at 1.9×10-4s under ultrasonic excitation frequency 35kHz and ultrasonic excitation amplitude 8μm

    图 5  一个超声激励周期Faraday波的流线图

    Figure 5.  Streamline diagram of Faraday wave in an ultrasonic excitation period

    图 6  Faraday波和超声激励相位差

    Figure 6.  Phase difference between Faraday wave and ultrasonic excitation wave

    图 7  实验装置平台

    Figure 7.  Experimental device platform

    图 8  表面驻波阵列

    Figure 8.  Surface standing wave array

    表  1  图 4中各个波峰位置处的坐标及波长

    Table  1.   Coordinates and wavelength at each peak position in Fig. 4

    序号 横向坐标/μm 波长/μm
    1 58.26 122.9
    2 181.2 105.7
    3 286.9 103.7
    4 390.6 103.7
    5 494.3 99.9
    6 594.2 101.9
    7 696.1 115.2
    8 811.3 124.9
    9 936.2
    下载: 导出CSV
  • [1] 雷成龙.利用液-固界面效应制备球形金属粉末及其性能研究[D].南京: 南京大学, 2016: 14-25. http://cdmd.cnki.com.cn/Article/CDMD-10284-1016123733.htm

    LEI C L.Preparation of spherical metal powder by liquid-solid interface effect and its properties[D]. Nanjing: Nanjing University, 2016: 14-25(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10284-1016123733.htm
    [2] 乐国敏, 李强, 董鲜峰.适用于金属增材制造的球形粉体制备技术[J].稀有金属材料与工程, 2017, 46(4):1162-1168. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc201704050

    LE G M, LI Q, DONG X F.Preparation of spherical powders for metal additive manufacturing[J]. Rare Metal Materials and Engineering, 2017, 46(4):1162-1168(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xyjsclygc201704050
    [3] 高正江, 周香林, 李景昊, 等.高性能球形金属粉末制备技术进展[J].热喷涂技术, 2018, 10(3):1-9. doi: 10.3969/j.issn.1674-7127.2018.03.001

    GAO Z J, ZHOU X L, LI J H, et al.Advances in preparation technology of high performance spherical metal powders[J]. Thermal Spraying Technology, 2018, 10(3):1-9(in Chinese). doi: 10.3969/j.issn.1674-7127.2018.03.001
    [4] 张海庆.均匀颗粒成型法(UDS)原理及应用[J].天津冶金, 2001(1):39-40. doi: 10.3969/j.issn.1006-110X.2001.01.011

    ZHANG H Q.Principle and application of uniform particle forming method (UDS)[J]. Tianjin Metallurgy, 2001(1):39-40(in Chinese). doi: 10.3969/j.issn.1006-110X.2001.01.011
    [5] SONG W, SHUMLAK U.Ultrasonically aided electrospray source for charged particles approaching monodisperse distributions[J]. Journal of Propulsion & Power, 2012, 26(2):353-363. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=af7485ec5a8c6a984b978c992594c5f5
    [6] FARADAY M.On the forms and states of fluids on vibrating elastic surfaces[J]. Proceedings of the Royal Society of London, 1831, 121:299-340.
    [7] BENJAMIN T B, URSELL F.The stability of the plane free surface of a liquid in vertical periodic motion[J]. Proceedings of the Royal Society of London, 1954, 225(1163):505-515. doi: 10.1098/rspa.1954.0218
    [8] EISENMENGER W.Dynamic properties of surface tension of water and aqueous solutions of surface active agents with standing capillary waves in the frequency range from 10kHz to 1.5 MHz[J]. Acoustica, 1959, 9:327-340.
    [9] PESKIN R L, RACO R J.Ultrasonic atomization of liquids[J]. The Journal Acoustical Society of America, 1963, 34(1):6-15. doi: 10.1121-1.1918700/
    [10] SINDAYIHEBURA D, BOLLE L.Theoretical and experimental study of the behavior of liquid film free surfaces driven by transverse ultrasonic vibrations[J]. WIT Transactions on Modelling and Simulation:Computational Modelling of Free and Moving Boundary Problems, 1995, 13:67-74.
    [11] SINDAYIHEBURA D, BOLLE L, CORNET A, et al.Theoretical and experimental study of transducers aimed at low-frequency ultrasonic atomization of liquids[J]. The Journal of the Acoustical Society of America, 1998, 103(3):1442-1448. doi: 10.1121/1.421300
    [12] 菅永军, 鄂学全, 柏威.参数激励圆柱形容器中的非线性Faraday波[J].应用数学和力学, 2003, 24(10):1057-1068. doi: 10.3321/j.issn:1000-0887.2003.10.009

    JIAN Y J, E X Q, BAI W.Nonlinear Faraday waves in parameter-excited cylindrical vessels[J]. Applied Mathematics and Mechanics, 2003, 24(10):1057-1068(in Chinese). doi: 10.3321/j.issn:1000-0887.2003.10.009
    [13] JIAN Y J, E X Q.Instability analysis of nonlinear surface waves in a circular cylindrical container subjected to a vertical excitation[J]. European Journal of Mechanics B-Fluids, 2005, 24(6):683-702. doi: 10.1016/j.euromechflu.2005.03.002
    [14] 长龙, 菅永军, 刘全生.圆柱形容器中垂直激励的弱黏性流体界面波[J].内蒙古大学学报(自然版), 2014, 45(4):353-359. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmgdxxb201404004

    CHANG L, JIAN Y J, LIU Q S.The interface of weakly viscous fluids with vertical excitation in cylindrical vessels[J]. Journal of Inner Mongolia University (Natural Science Edition), 2014, 45(4):353-359(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=nmgdxxb201404004
    [15] HIGGINBOTHAM A P, GUILLEN A, JONES N, et al.Evidence of the harmonic Faraday instability in ultrasonic atomization experiments with a deep, inviscid fluid[J]. The Journal of the Acoustical Society of America, 2011, 130(5):2694. doi: 10.1121/1.3643816
    [16] LI Y, UMEMURA A.Two-dimensional numerical investigation on the dynamics of ligament formation by Faraday instability[J]. International Journal of Multiphase Flow, 2014, 60:64-75. doi: 10.1016/j.ijmultiphaseflow.2013.12.002
    [17] 刘财兴, 杜会静, 王怀翔.垂直激励低黏度硅油的法拉第波研究[J].大学物理, 2016, 35(4):52-59. http://www.cnki.com.cn/Article/CJFDTOTAL-DXWL201604013.htm

    LIU C X, DU H J, WANG H X.Faraday wave study of vertically excited low viscosity silicone oil[J]. University Physics, 2016, 35(4):52-59(in Chinese). http://www.cnki.com.cn/Article/CJFDTOTAL-DXWL201604013.htm
    [18] SHELDRAKE M, SHELDRAKE R.Determinants of Faraday wave-patterns in water samples oscillated vertically at a range of frequencies from 50-200 Hz[J]. Water, 2017, 9:1-27.
    [19] 赵文定, 王思慧, 范周游, 等.理想流体的法拉第波模态[J].物理实验, 2017, 37(1):13-18. doi: 10.3969/j.issn.1005-4642.2017.01.003

    ZHAO W D, WANG S H, FAN Z Y, et al.Faraday wave modes of ideal fluids[J]. Physics Experiment, 2017, 37(1):13-18(in Chinese). doi: 10.3969/j.issn.1005-4642.2017.01.003
    [20] TADRIST L, SHIM J B, GILET T, et al.Faraday instability and subthreshold Faraday waves:Surface waves emitted by walkers[J]. Journal of Fluid Mechanics, 2018, 848:906-945. doi: 10.1017/jfm.2018.358
    [21] DUMOUCHEL C, SINDAYIHEBURA D, BOLLE L.Application of the maximum entropy formalism on sprays produced by ultrasonic atomizers[J]. Particle & Particle Systems Characterization, 2003, 20(2):150-161. doi: 10.1002-ppsc.200390012/
    [22] RAYLEIGH J W S B, LINDSAY R B.The theory of sound[M]. New York:Dover Publications, 1945:344.
    [23] EHRHORN J, SEMKE W.Numerical modeling of vibration induced atomization of liquids[J]. Folia Parasitologica, 2013, 45(3):196-198. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC0213811149
    [24] YULE A J, AL-SULEIMANI Y.A CFD prediction of wave development and droplet production on surface under ultrasonic excitation[C]//Preceding of Institute for Liquid Atomization and Spray Systems-Europe, 2002.
    [25] HONG Y, JIE H, GU X Z, et al.Study on ultrasonic spray technology for the coating of vascular stent[J]. Science China Technological Sciences, 2011, 54(12):3358-3370. doi: 10.1007/s11431-011-4580-0
    [26] 蔡耀中.超声微泡发生方法及装置设计研究[D].杭州: 杭州电子科技大学, 2014: 46. http://cdmd.cnki.com.cn/Article/CDMD-10336-1014229101.htm

    CAI Y Z.The design and study of ultrasonic micro bubbles generator and technique[D]. Hangzhou: Hangzhou Dianzi University, 2014: 46(in Chinese). http://cdmd.cnki.com.cn/Article/CDMD-10336-1014229101.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  388
  • HTML全文浏览量:  5
  • PDF下载量:  365
  • 被引次数: 0
出版历程
  • 收稿日期:  2018-12-02
  • 录用日期:  2018-12-29
  • 刊出日期:  2019-08-20

目录

    /

    返回文章
    返回
    常见问答