留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

发动机短舱泄压过程瞬态仿真

王晨臣 冯诗愚 彭孝天 邓阳 陈俊

王晨臣, 冯诗愚, 彭孝天, 等 . 发动机短舱泄压过程瞬态仿真[J]. 北京航空航天大学学报, 2019, 45(11): 2284-2290. doi: 10.13700/j.bh.1001-5965.2019.0081
引用本文: 王晨臣, 冯诗愚, 彭孝天, 等 . 发动机短舱泄压过程瞬态仿真[J]. 北京航空航天大学学报, 2019, 45(11): 2284-2290. doi: 10.13700/j.bh.1001-5965.2019.0081
WANG Chenchen, FENG Shiyu, PENG Xiaotian, et al. Transient simulation on pressure relief process of engine nacelle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2284-2290. doi: 10.13700/j.bh.1001-5965.2019.0081(in Chinese)
Citation: WANG Chenchen, FENG Shiyu, PENG Xiaotian, et al. Transient simulation on pressure relief process of engine nacelle[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2284-2290. doi: 10.13700/j.bh.1001-5965.2019.0081(in Chinese)

发动机短舱泄压过程瞬态仿真

doi: 10.13700/j.bh.1001-5965.2019.0081
基金项目: 

国家自然科学基金 U1933121

南京航空航天大学研究生创新基地(实验室)开放基金 kfjj20180108

江苏高校优势学科建设工程 

详细信息
    作者简介:

    王晨臣  男, 硕士研究生。主要研究方向:飞行器燃油系统

    冯诗愚  男, 博士, 副教授。主要研究方向:飞行器环境控制和燃油系统

    通讯作者:

    冯诗愚. E-mail:shiyuf@nuaa.edu.cn

  • 中图分类号: V224+.2

Transient simulation on pressure relief process of engine nacelle

Funds: 

National Natural Science Foundation of China U1933121

the Fundamental Research Funds for the Central Universities kfjj20180108

the Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • 摘要:

    发动机短舱泄压门的设计会影响到短舱的安全性,泄压是一个动态变化过程,与舱内外压力、外界气流马赫数及泄压门结构有关。基于Modelica语言建立了短舱泄压过程零维瞬态仿真数学模型,并通过计算流体力学(CFD)方法得到不同开启角度下所需泄压门排放质量流量和力矩系数,并将这些系数代入零维瞬态仿真数学模型,得到了短舱泄压过程中舱内压力、泄压门开启角度等关键参数随时间的变化关系,分析了泄压门开启舱内压力阈值及最大开启角度对泄压过程的影响。研究结果显示,降低泄压门开启舱内压力阈值会使泄压过程到达平衡阶段时间减小,但是对平衡阶段舱内压力和往复摆动角度/幅度无影响。适当降低最大开启角度可有效降低泄压平衡阶段往复摆动角度/幅度,而对初始阶段的泄压速率和平衡阶段的短舱内部压力基本无影响,但是随着最大开启角度进一步降低,则会导致泄压速率下降,并使平衡阶段短舱内部压力升高。

     

  • 图 1  短舱泄压过程示意图

    Figure 1.  Schematic diagram of nacelle pressure relief process

    图 2  泄压门外形和结构示意图

    Figure 2.  Schematic diagram of PRD shape and structure

    图 3  泄压门几何模型

    Figure 3.  Geometry model of PRD

    图 4  网格划分

    Figure 4.  Mesh generation

    图 5  计算结果与试验数据对比

    Figure 5.  Comparison of calculation and test data

    图 6  计算结果与试验数据误差分析

    Figure 6.  Error analysis of calculation and test data

    图 7  排放质量流量随开启角度和舱内压力的变化

    Figure 7.  Discharge mass flow rate varies with opening angle and plenum compartment pressure

    图 8  流量系数随开启角度和舱内压力的变化

    Figure 8.  Discharge coefficient varies with opening angle and plenum compartment pressure

    图 9  力矩随开启角度和舱内压力的变化

    Figure 9.  Moment varies with opening angle and plenum compartment pressure

    图 10  不同开启阈值下舱内压力变化对比

    Figure 10.  Comparison of plenum compartment pressure changes under different opening thresholds

    图 11  不同开启阈值下开启角度变化对比

    Figure 11.  Comparison of opening angle changes under different opening thresholds

    图 12  不同最大开启角度下舱内压力变化对比

    Figure 12.  Comparison of plenum compartment pressure changes under different maximum opening angles

    图 13  不同最大开启角度下开启角度变化对比

    Figure 13.  Comparison of PRD opening angle changes under different maximum opening angles

  • [1] 中国民用航空局.中国民用航空规章第25部运输类飞机适航标准: CCAR-25-R3[S].北京: 中国民用航空局, 2001.

    Civil Aviation Administration of China.Chinese civil aviation regulations Part 25 airworthiness standards for transport category aircraft: CCAR-25-R3[S]. Beijing: Civil Aviation Administration of China, 2001(in Chinese).
    [2] VICK A R. An investigation of discharge and thrust characteristics of flapped outlets for stream Mach numbers from 0.40 to 1.30: NACA TN4007[R]. Washington, D.C.: NACA, 1957.
    [3] PRATT P R, WATTERSON J K, BENARD E.Computational and experimental studies of pressure relief doors in ventilated nacelle compartments[J]. Investigative Ophthalmology & Visual Science, 2003, 28(10):1678-1686.
    [4] PRATT P R, WATTERSON J K, BENARD E, et al.Performance of a flapped duct exhausting into a compressible external flow[C]//CD-ROM Proceedings of 24th International Congress of the Aeronautical Sciences.Yokohama: Optimage Ltd., 2004, 1: 1-9.
    [5] BENARD E, WATTERSON J K, GAULT R, et al.Review and experimental survey of flapped exhaust performance[J]. Journal of Aircraft, 2008, 45(1):349-352. doi: 10.2514/1.34238
    [6] VEDESHKIN G, DUBOVITSKIY A, BONDARENKO D, et al.Experimental investigations of hydraulic devices performance in aviation engine compartment[C]//28th Congress of the International Council of the Aeronautical Sciences 2012.Brisbane: Curran Associates, Inc., 2013, 2: 1692-1700.
    [7] SCHOTT T. Computational analysis of aircraft pressure relief doors[D]. Colorado: Colorado State University, 2016.
    [8] 郁成德.增压舱突然泄压载荷计算[J].民用飞机设计与研究, 1997(2):43-49. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700385930

    YU C D.Calculation of pressurized cabin pressure relief load[J]. Civil Aircraft Design & Research, 1997(2):43-49(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199700385930
    [9] 刘华源, 屠毅.民用飞机泄压载荷影响因素研究[J].科技视界, 2016(16):30-31. doi: 10.3969/j.issn.2095-2457.2016.16.016

    LIU H Y, TU Y.Numerical simulation of decompression in pressurized cabin of civil aircraft[J]. Science & Technology Vision, 2016(16):30-31(in Chinese). doi: 10.3969/j.issn.2095-2457.2016.16.016
    [10] 赵建军, 丁建完, 周凡利, 等.Modelica语言及其多领域统一建模与仿真机理[J].系统仿真学报, 2006, 18(2):570-573. http://d.old.wanfangdata.com.cn/Periodical/xtfzxb2006z2162

    ZHAO J J, DING J W, ZHOU F L, et al.Modelica and its mechanism of multi-domain unified modeling and simulation[J]. Journal of System Simulation, 2006, 18(2):570-573(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/xtfzxb2006z2162
    [11] TILLER M. Introduction to physical modeling with Modelica[M]. Boston: Kluwer Academic, 2001.
    [12] LOVERA M, PULECCHI T.Object-oriented modelling for spacecraft dynamics: A case study[C]//Proceedings of the 2006 IEEE Conference on Computer Aided Control Systems Design.Piscataway, NJ: IEEE Press, 2006: 1898-1903.
    [13] CASELLA F, LOVERA M.High-accuracy orbital dynamics simulation through keplerian and equinoctial parameters[C]//Proceedings of the 6th International Modelica Conference.Bielefeld: The Modelica Association, 2008, 2: 505-514.
    [14] 张宝坤, 赵建军, 刘伟.关于飞机液压负载功率系统优化设计研究[J].计算机仿真, 2017, 34(5):82-87. doi: 10.3969/j.issn.1006-9348.2017.05.018

    ZHANG B K, ZHAO J J, LIU W.Research on aircraft hydraulic load power system optimization design[J]. Computer Simulation, 2017, 34(5):82-87(in Chinese). doi: 10.3969/j.issn.1006-9348.2017.05.018
    [15] 李志为, 赵洪山.基于Modelica语言的电力系统建模与仿真[J].华东电力, 2012(3):425-428.

    LI Z W, ZHAO H S.Modeling and simulation of power system based on Modelica[J]. East China Electric Power, 2012(3):425-428(in Chinese).
    [16] 程雷, 秦东晨, 王耀凯, 等.基于Modelica的纯电动客车建模仿真研究[J].汽车技术, 2017(8):43-48. doi: 10.3969/j.issn.1000-3703.2017.08.008

    CHENG L, QING D C, WANG Y K, et al.Modeling and simulation of pure electric bus based on Modelica[J]. Automobile Technology, 2017(8):43-48(in Chinese). doi: 10.3969/j.issn.1000-3703.2017.08.008
    [17] RUBIO M, URQUIA A, GONZÁLEZ L, et al.FuelCellLib-a modelica library for modeling of fuel cells[C]//Proceedings of the 4th International Modelica Conference.Hamburg: The Modelica Association, 2005, 1: 75-83.
    [18] 孟亦飞, 蒋军成.化工装置泄漏扩散定量风险分析[J].石油化工高等学校学报, 2008, 21(4):50-54. doi: 10.3969/j.issn.1006-396X.2008.04.013

    MENG Y F, JIANG J C.Calculation of high-pressure gas tank leakage parameters[J]. Industrial Safety and Environmental Protection, 2008, 21(4):50-54(in Chinese). doi: 10.3969/j.issn.1006-396X.2008.04.013
    [19] 范钦珊.理论力学[M].北京:高等教育出版社, 2000:264-265.

    FAN Q S.Theoretical mechanics[M]. Beijing:Higher Education Press, 2000:264-265(in Chinese).
  • 加载中
图(13)
计量
  • 文章访问数:  490
  • HTML全文浏览量:  0
  • PDF下载量:  453
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-04
  • 录用日期:  2019-03-29
  • 刊出日期:  2019-11-20

目录

    /

    返回文章
    返回
    常见问答