留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于逆系统解耦的MSCSG姿态测量方法

于春淼 汪洲 任元 王卫杰 樊亚洪

于春淼, 汪洲, 任元, 等 . 基于逆系统解耦的MSCSG姿态测量方法[J]. 北京航空航天大学学报, 2020, 46(1): 150-158. doi: 10.13700/j.bh.1001-5965.2019.0132
引用本文: 于春淼, 汪洲, 任元, 等 . 基于逆系统解耦的MSCSG姿态测量方法[J]. 北京航空航天大学学报, 2020, 46(1): 150-158. doi: 10.13700/j.bh.1001-5965.2019.0132
YU Chunmiao, WANG Zhou, REN Yuan, et al. MSCSG attitude measurement method based on inverse system decoupling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 150-158. doi: 10.13700/j.bh.1001-5965.2019.0132(in Chinese)
Citation: YU Chunmiao, WANG Zhou, REN Yuan, et al. MSCSG attitude measurement method based on inverse system decoupling[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(1): 150-158. doi: 10.13700/j.bh.1001-5965.2019.0132(in Chinese)

基于逆系统解耦的MSCSG姿态测量方法

doi: 10.13700/j.bh.1001-5965.2019.0132
基金项目: 

国家自然科学基金 51475472

国家自然科学基金 51605489

北京市“高创计划”青年拔尖人才项目 2017000026833ZK23

详细信息
    作者简介:

    于春淼, 男, 硕士研究生。主要研究方向:磁悬浮控制敏感陀螺的测量与控制

    汪洲, 男, 博士, 副教授。主要研究方向:航天装备仿真与效能评估

    任元, 男, 博士, 副教授。主要研究方向:导航、制导与控制

    通讯作者:

    任元, E-mail:renyuan_823@aliyun.cn

  • 中图分类号: V448.2

MSCSG attitude measurement method based on inverse system decoupling

Funds: 

National Natural Science Foundation of China 51475472

National Natural Science Foundation of China 51605489

Beijing Youth Top-Notch Talent Support Program 2017000026833ZK23

More Information
  • 摘要:

    磁悬浮控制敏感陀螺(MSCSG)是一种将姿态控制和姿态测量功能合二为一的新型陀螺,采用洛伦兹力磁轴承(LFMB)控制转子径向偏转。针对MSCSG 2个测量轴之间存在耦合的问题,提出了一种基于逆系统解耦的测量方法。首先,分析了MSCSG的结构组成,在此基础上建立了LFMB-转子系统动力学模型,推导了MSCSG陀螺进行两自由度姿态测量的工作原理;然后,分析了2个测量轴之间的耦合关系,进而提出采用逆系统对2个测量轴进行解耦。最后,对所提方法的有效性进行了仿真验证。仿真结果表明:在所提解耦方法作用下,2个测量轴之间的耦合效果得到了很好的抑制,测量精度得到了一定的提高。

     

  • 图 1  MSCSG陀螺房结构示意图

    Figure 1.  Schematic diagram of MSCSG gyro room structure

    图 2  LFMB结构原理

    Figure 2.  LFMB structure principle

    图 3  MSCSG转子结构示意图

    Figure 3.  Schematic diagram of MSCSG rotor structure

    图 4  姿态测量系统原理框图

    Figure 4.  Principle block diagram of attitude measurement system

    图 5  采用逆系统解耦的MSCSG原理示意图

    Figure 5.  Schematic diagram of MSCSG principle with inverse system decoupling

    图 6  两种方法在输入频率为10 Hz和20 Hz时的测量误差比较曲线

    Figure 6.  Comparison curves of measurement errors between two methods at input frequency of 10 Hz and 20 Hz

    图 7  两种方法在输入频率为10 Hz和20 Hz时的测量耦合比较曲线

    Figure 7.  Comparison curves of measurement coupling between two methods at input frequency of 10 Hz and 20 Hz

    表  1  MSCSG系统仿真参数

    Table  1.   MSCSG system simulation parameters

    参数 数值
    N/匝 100
    L/mm 80
    Jz/(kg·m2) 0.017 8
    Jr/(kg·m2) 0.006 2
    Ω/Hz 83.3
    I/A 0.5
    lm/mm 59
    ls/mm 78.7
    下载: 导出CSV
  • [1] YU Y J, FANG J C, YANG Z H.Torque distribution of the integrated magnetically suspended inertia actuator for attitude maneuvers[J].Acta Astronautica, 2016, 119:71-78. doi: 10.1016/j.actaastro.2015.11.008
    [2] 刘强, 赵勇, 代峰燕, 等.磁悬浮陀螺飞轮用隐式洛伦兹力磁轴承[J].光学精密工程, 2018, 26(2):399-409. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201802018

    LIU Q, ZHAO Y, DAI F Y, et al.Implicit lorentz force magnetic bearing for magnetically suspended gyro flywheel[J].Optics and Precision Engineering, 2018, 26(2):399-409(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201802018
    [3] CHEN X C, CAI Y W, REN Y, et al.Spacecraft angular rates and angular acceleration estimation using single-gimbal magnetically suspended control moment gyros[J].IEEE Transactions on Industrial Electronics, 2019, 66(1):440-450. doi: 10.1109/TIE.2018.2826468
    [4] 夏长峰, 蔡远文, 任元, 等.磁悬浮控制敏感陀螺转子前馈解耦内模控制[J].北京航空航天大学学报, 2018, 44(3):480-488. doi: 10.13700/j.bh.1001-5965.2017.0190

    XIA C F, CAI Y W, REN Y, et al.Feedforward decoupling and internal model control for rotor of magnetically suspended control and sensing gyroscope[J].Journal of Beijing University of Aeronautics and Astronautics, 2018, 44(3):480-488(in Chinese). doi: 10.13700/j.bh.1001-5965.2017.0190
    [5] 任元, 王卫杰, 刘强, 等.一种磁悬浮控制敏感陀螺: 201510006597.5[P].2017-04-28.

    REN Y, WANG W J, LIU Q, et al.A kind of magnetically suspended control and sensing gyroscopic: 201510006597.5[P].2017-04-28(in Chinese).
    [6] 夏长峰, 蔡远文, 任元, 等.MSCSG转子不平衡振动原理分析与建模[J].北京航空航天大学学报, 2018, 44(11):78-85. doi: 10.13700/j.bh.1001-5965.2018.0044

    XIA C F, CAI Y W, REN Y, et al.Principle analysis and modeling of rotor imbalance vibration in magnetically suspended control and sensing gyroscope[J].Journal of Aeronautics and Astronautics, 2018, 44(11):78-85(in Chinese). doi: 10.13700/j.bh.1001-5965.2018.0044
    [7] REN Y, CHEN X C, CAI Y W, et al.Attitude-rate measurement and control integration using magnetically suspended control & sensitive gyroscopes[J].IEEE Transactions on Industrial Electronics, 2018, 65(6):4921-4932. doi: 10.1109/TIE.2017.2772161
    [8] 夏长峰, 蔡远文, 任元, 等.MSCSG转子系统的扩展双频Bode图稳定性分析方法[J].宇航学报, 2018, 39(2):168-176. http://d.old.wanfangdata.com.cn/Periodical/yhxb201802007

    XIA C F, CAI Y W, REN Y, et al.Extended dual-frequency Bode diagram stability analysis method for mscsg rotor system[J].Journal of Astronautics, 2018, 39(2):168-176(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/yhxb201802007
    [9] 崔培玲, 盖玉欢, 房建成, 等.主被动磁悬浮转子的不平衡振动自适应控制[J].光学精密工程, 2015, 23(1):122-131. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201501017

    CUI P L, GAI Y H, FANG J C, et al.Unbalanced vibration adaptive control of active and passive magnetically suspended rotor[J].Optics and Precision Engineering, 2015, 23(1):122-131(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201501017
    [10] CUI P L, LI S, ZHAO G Z, et al.Suppression of harmonic current in active-passive magnetically suspended CMG using improved repetitive controller[J].IEEE/ASME Transactions on Mechatronics, 2016, 21(4):2132-2141. doi: 10.1109/TMECH.2016.2555858
    [11] 边志强, 蔡陈生, 吕旺, 等.遥感卫星高精度高稳定度控制技术[J].上海航天, 2014, 31(3):24-33. doi: 10.3969/j.issn.1006-1630.2014.03.005

    BIAN Z Q, CAI C S, LV W, et al.High precision and high stability control technology for remote sensing satellites[J].Aerospace Shanghai, 2014, 31(3):24-33(in Chinese). doi: 10.3969/j.issn.1006-1630.2014.03.005
    [12] CHEN X C, CAI Y W, REN Y, et al.Spacecraft angular acceleration estimation using single-gimbal magnetically suspended control moment gyros[J].IEEE Transactions on Industrial Electronics, 2019, 66(1):440-450. doi: 10.1109/TIE.2018.2826468
    [13] 刘彬, 房建成, 刘刚.一种磁悬浮陀螺飞轮方案设计与关键技术分析[J].航空学报, 2011, 32(8):1478-1487. http://d.old.wanfangdata.com.cn/Periodical/hkxb201108012

    LIU B, FANG J C, LIU G.A kind of scheme design and key technologies analysis of a magnetically suspended gyro flywheel[J].Acta Aeronautica et Astronautica Sinica, 2011, 32(8):1478-1487(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201108012
    [14] GEORGE T, WILLIAM W, SATYA P, et al.GyroWheelTM-An innovative new actuator/sensor for 3-axis spacecraft attitude control[C]//Proceedings of the 13th Annual AIAA/USU Conference on Small Satellites.Reston: AIAA, 1999: 1-13.
    [15] 房建成, 任元.磁悬浮控制力矩陀螺技术[M].北京:国防工业出版社, 2014.

    FANG J C, REN Y.Magnetically suspended control momentum gyroscope technology[M].Beijing:National Defense Industry Press, 2014(in Chinese).
    [16] FANG J C, ZHENG S Q, HAN B C.Attitude sensing and dynamic decoupling based on active magnetic bearing of MSDGCMG[J].IEEE Transactions on Instrumentation & Measurement, 2012, 61(2):338-348. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=087cf6b17c55b1f82be7376e12e79475
    [17] 李明辉, 云卫涛, 张孝杰.基于双模糊解耦控制的小型汽轮机负荷控制[J].热力发电, 2018, 47(1):112-118. http://d.old.wanfangdata.com.cn/Periodical/rlfd201801018

    LI M H, YUN W T, ZHANG X J.Load control of small steam turbine based on double fuzzy decoupling control[J].Thermal Power Generation, 2018, 47(1):112-118(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/rlfd201801018
    [18] 张国宁, 黄湘远.神经网络在复杂系统建模中的应用[J].科技导报, 2018, 36(12):66-70. http://d.old.wanfangdata.com.cn/Periodical/jsjgcyyy200403068

    ZHANG G N, HUANG X Y.Application of neural network in modeling of complex systems[J].Science & Technology Review, 2018, 36(12):66-70(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/jsjgcyyy200403068
    [19] 郭艳玲, 许李尚, 奚文龙, 等.基于滑模解耦的EPS用PMSM鲁棒预测电流控制[J].微特电机, 2018, 46(2):42-47. doi: 10.3969/j.issn.1004-7018.2018.02.011

    GUO Y L, XU L S, XI W L, et al.PMSM robust predictive current control for EPS based on sliding mode decoupling[J].Small & Special Electrical Machines, 2018, 46(2):42-47(in Chinese). doi: 10.3969/j.issn.1004-7018.2018.02.011
    [20] FANG J C, REN Y.Decoupling control of magnetically suspended rotor system in control moment gyros based on an inverse system method[J].IEEE/ASME Transactions on Mechatronics, 2012, 17(6):1133-1144. doi: 10.1109/TMECH.2011.2159618
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  341
  • HTML全文浏览量:  3
  • PDF下载量:  302
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-03-27
  • 录用日期:  2019-07-12
  • 刊出日期:  2020-01-20

目录

    /

    返回文章
    返回
    常见问答