留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

燃料电池无人机动力系统半实物仿真

戴月领 刘莉 张晓辉

戴月领, 刘莉, 张晓辉等 . 燃料电池无人机动力系统半实物仿真[J]. 北京航空航天大学学报, 2020, 46(2): 439-446. doi: 10.13700/j.bh.1001-5965.2019.0250
引用本文: 戴月领, 刘莉, 张晓辉等 . 燃料电池无人机动力系统半实物仿真[J]. 北京航空航天大学学报, 2020, 46(2): 439-446. doi: 10.13700/j.bh.1001-5965.2019.0250
DAI Yueling, LIU Li, ZHANG Xiaohuiet al. Hardware-in-the-loop simulation of fuel cell UAV power system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 439-446. doi: 10.13700/j.bh.1001-5965.2019.0250(in Chinese)
Citation: DAI Yueling, LIU Li, ZHANG Xiaohuiet al. Hardware-in-the-loop simulation of fuel cell UAV power system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(2): 439-446. doi: 10.13700/j.bh.1001-5965.2019.0250(in Chinese)

燃料电池无人机动力系统半实物仿真

doi: 10.13700/j.bh.1001-5965.2019.0250
详细信息
    作者简介:

    戴月领  男,硕士研究生。主要研究方向:混合能源管理与动力系统半实物仿真

    刘莉  女,博士,教授,博士生导师。主要研究方向:飞行器总体设计、飞行器结构设计与强度分析、飞行器制导与控制技术

    张晓辉  男,博士。主要研究方向:飞行器总体设计与混合能源管理

    通讯作者:

    刘莉. E-mail: liuli@bit.edu.cn

  • 中图分类号: V216+.7

Hardware-in-the-loop simulation of fuel cell UAV power system

More Information
  • 摘要:

    针对燃料电池无人机(UAV)动力系统飞行测试困难的问题,为了提升动力系统设计与开发水平,以燃料电池、锂电池、DC/DC功率转换器、电子调速器和直流无刷电机组成的动力系统作为实物介入,无人机动力学、自动驾驶仪、螺旋桨、飞行环境等数学模型为软件部分,无人机的油门信号控制及飞行过程中电机的载荷等为模拟仿真部分,以信号发生器、测功机及扭矩加载装置为软硬件接口,设计并搭建了燃料电池无人机动力系统半实物(HIL)仿真平台。面向典型任务剖面,基于状态机管理策略,对燃料电池/锂电池电动无人机的动力系统进行了半实物仿真研究,分析了半实物仿真平台和管理策略的有效性和实用性。

     

  • 图 1  燃料电池混合动力系统半实物仿真架构

    Figure 1.  Hardware-in-the-loop simulation architecture for fuel cell hybrid power system

    图 2  EOS-600型燃料电池

    Figure 2.  EOS-600 fuel cell

    图 3  燃料电池伏安特性曲线

    Figure 3.  U-I characteristic curves of fuel cell

    图 4  锂电池伏安特性曲线

    Figure 4.  U-I characteristic curves of lithium battery

    图 5  无刷电机特性曲线与螺旋桨扭矩曲线

    Figure 5.  Characteristic curves of brushless motor and torque curve of propeller

    图 6  半实物仿真动力系统

    Figure 6.  Power system in hardware-in-the-loop simulation

    图 7  前进比与拉力系数和扭矩系数的关系

    Figure 7.  Relation between advance ratio and tension coefficient and torque coefficient

    图 8  螺旋桨拉力曲线

    Figure 8.  Propeller tension curve

    图 9  无人机模块

    Figure 9.  UAV module

    图 10  典型任务剖面[16]

    Figure 10.  Typical mission profile[16]

    图 11  状态机控制策略

    Figure 11.  State machine control strategy

    图 12  动力系统状态

    Figure 12.  State of power system

    图 13  状态机策略试验结果

    Figure 13.  Test results of state machine strategy

    表  1  燃料电池基本参数

    Table  1.   Basic parameters of fuel cell

    参数 数值
    额定功率/W 600
    额定电压/V 24
    额定电流/A 25
    电压范围/V 20~40
    氢气纯度/% ≥99.95
    氢气工作压力/MPa 0.05~0.06
    氢气消耗量(额定)/(L·min-1) 7
    环境温度/℃ -5~40
    环境湿度/% 10~95
    下载: 导出CSV

    表  2  PI和PID控制器的增益[16]

    Table  2.   Gain of PI and PID controller [16]

    控制面 控制类型 增益
    副翼 P 0.4π/180°
    I 0.05π/180°
    方向舵 P 0.1π/180°
    I 0.05π/180°
    升降舵 P 0.03
    I 0.07
    D 0.35
    油门 P 0.1
    I 0.000 001
    D 0.03
    下载: 导出CSV
  • [1] 刘莉, 杜孟尧, 张晓辉, 等.太阳能/氢能无人机总体设计与能源管理策略研究[J].航空学报, 2016, 37(1):144-162. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201601013

    LIU L, DU M Y, ZHANG X H, et al.Conceputual design and energy management stragement strategy for UAV with hybrid solar and hydrogen energy[J].Acta Aeronautica et Astronautica Sinica, 2016, 37(1):144-162(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkxb201601013
    [2] 王刚, 胡峪, 宋笔锋, 等.电动无人机动力系统优化设计及航时评估[J].航空动力学报, 2015, 30(8):1834-1840. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201508006

    WANG G, HU Y, SONG B F, et al.Optimal design and endurance estimation of propulsion system for electric-powered unmanned aerial vechicle[J].Journal of Aerospace Power, 2015, 30(8):1834-1840(in Chinese). http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hkdlxb201508006
    [3] 周苏, 高昆鹏, 支雪磊.一种改进的质子交换膜燃料电池系统动态模型[J].同济大学学报(自然科学版), 2015, 43(6):882-887. http://d.old.wanfangdata.com.cn/Periodical/tjdxxb201506012

    ZHOU S, GAO K P, ZHI X L.An improved dynamic model for proton exchange membrane fuel cell system[J].Journal of Tongji University(Natural Science), 2015, 43(6):882-887(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/tjdxxb201506012
    [4] 徐林.基于Simulink的一体化实时半实物仿真平台的研究与实现[D].长沙: 国防科学技术大学, 2008.

    XU L.Reasearch and implementation of integrative real-time & hardware-in-the-loop simulation platform based on Simulink[D].Changsha: National University of Defense Technology, 2008(in Chinese).
    [5] 宋静婧, 祝明, 武哲, 等."人在回路"无人飞艇半实物仿真系统设计与实现[J].北京航空航天大学学报, 2011, 37(5):595-599. https://bhxb.buaa.edu.cn/CN/Y2011/V37/I5/595

    SONG J J, ZHU M, WU Z, et al.Design and implementation of man-in-the-loop unmanned airship HIL simulation system[J].Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(5):595-599(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2011/V37/I5/595
    [6] 常城.汽车电子半实物仿真平台的研究[D].大连: 大连理工大学, 2008.

    CHANG C.Research on the automotive electronics HIL simulation platform[D].Dalian: Dalian University of Technology, 2008(in Chinese).
    [7] TIGNER B, MEYER M, HOLDEN M, et al.Test techniques for small-scale research aircraft: AIAA-1998-2726[R].Reston: AIAA, 1998.
    [8] BRADLREY T, MOFFITT B, PAREKH D, et al.Flight test results for a fuel cell unmanned aerial vehicle: AIAA-2007-32[R].Reston: AIAA, 2007.
    [9] VURAL B, BOYNUEGRI A R, NAKIR I, et al.Fuel cell and ultra-capacitor hybridization:A prototype test bench based analysis of different energy management strategies for vehicular applications[J].International Journal of Hydrogen Energy, 2010, 35(20):11161-11171. doi: 10.1016/j.ijhydene.2010.07.063
    [10] GREENWELL W, VAHIDI A.Predictive control of voltage and current in a fuel cell-ultracapacitor hybrid[J].IEEE Transactions on Industrial Electronics, 2010, 57(6):1954-1963. doi: 10.1109/TIE.2009.2031663
    [11] VERSTRAETE D, LEHMKUEHLER K, GONG A, et al.Characterisation of a hybrid, fuel-cell-based propulsion system for small unmanned aircraft[J].Journal of Power Sources, 2014, 250:204-211. doi: 10.1016/j.jpowsour.2013.11.017
    [12] VERSTRAETE D, GONG A, LU D D C, et al.Experimental investigation of the role of the battery in the aerostack hybrid, fuel-cell-based propulsion system for small unmanned aircraft systems[J].International Journal of Hydrogen Energy, 2015, 40(3):1598-1606. doi: 10.1016/j.ijhydene.2014.11.043
    [13] ZHANG X H, LIU L, DAI Y L, et al.Experimental investigation on the online fuzzy energy management of hybrid fuel cell/battery power system for UAVs[J].International Journal of Hydrogen Energy, 2018, 43(21):10094-10103. doi: 10.1016/j.ijhydene.2018.04.075
    [14] 张晓辉, 刘莉, 戴月领, 等.燃料电池无人机动力系统方案设计与试验[J].航空学报, 2018, 39(8):221874. http://d.old.wanfangdata.com.cn/Periodical/hkxb201808013

    ZHANG X H, LIU L, DAI Y L, et al.Design and test of propulsion system for fuel cell powered UAVs[J].Acta Aeronautica et Astronautica Sinica, 2018, 39(8):221874(in Chinese). http://d.old.wanfangdata.com.cn/Periodical/hkxb201808013
    [15] MOFFITT B, BRADLREY T, MAVRIS D, et al.Reducing uncertainty of a fuel cell UAV through variable fidelity optimization: AIAA-2007-7793[R].Reston: AIAA, 2007.
    [16] HUNG J Y C.Investigation of methods for increasing the energy efficiency on unmanned aerial vehicles(UAVs)[D].Brisbane: Queensland University of Technology, 2011. http://core.ac.uk/display/10907444
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  435
  • HTML全文浏览量:  2
  • PDF下载量:  117
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-22
  • 录用日期:  2019-09-06
  • 刊出日期:  2020-02-20

目录

    /

    返回文章
    返回
    常见问答