留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞行包线下燃油箱耗氧型催化惰化系统性能研究

彭孝天 冯诗愚 任童 张瑞华 潘俊 王洋洋

彭孝天, 冯诗愚, 任童, 等 . 飞行包线下燃油箱耗氧型催化惰化系统性能研究[J]. 北京航空航天大学学报, 2021, 47(8): 1565-1570. doi: 10.13700/j.bh.1001-5965.2020.0283
引用本文: 彭孝天, 冯诗愚, 任童, 等 . 飞行包线下燃油箱耗氧型催化惰化系统性能研究[J]. 北京航空航天大学学报, 2021, 47(8): 1565-1570. doi: 10.13700/j.bh.1001-5965.2020.0283
PENG Xiaotian, FENG Shiyu, REN Tong, et al. Performance of oxygen-consuming catalytic inerting system of fuel tank under flight envelope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1565-1570. doi: 10.13700/j.bh.1001-5965.2020.0283(in Chinese)
Citation: PENG Xiaotian, FENG Shiyu, REN Tong, et al. Performance of oxygen-consuming catalytic inerting system of fuel tank under flight envelope[J]. Journal of Beijing University of Aeronautics and Astronautics, 2021, 47(8): 1565-1570. doi: 10.13700/j.bh.1001-5965.2020.0283(in Chinese)

飞行包线下燃油箱耗氧型催化惰化系统性能研究

doi: 10.13700/j.bh.1001-5965.2020.0283
基金项目: 

国家自然科学基金 U1933121

南京航空航天大学研究生拔尖创新人才培养“引航计划”跨学科创新基金 KXKCXJJ202004

江苏省研究生科研与实践创新计划 KYCX19_0198

江苏高校优势学科建设工程 

详细信息
    通讯作者:

    冯诗愚, E-mail: shiyuf@nuaa.edu.cn

  • 中图分类号: V37;V219

Performance of oxygen-consuming catalytic inerting system of fuel tank under flight envelope

Funds: 

National Natural Science Foundation of China U1933121

Interdisciplinary Innovation Fundation for Graduates, NUAA KXKCXJJ202004

Postgraduate Research & Practice Innovation Program of Jiangsu Province KYCX19_0198

Priority Academic Program Development of Jiangsu Higher Education Institutions 

More Information
  • 摘要:

    为给新型耗氧催化惰化系统部件设计提供输入参数,在提出低温可控耗氧催化惰化系统流程基础上,以燃油箱出口抽吸流量为基准,基于质量守恒和能量守恒方程,建立了系统流程模型。以中央燃油箱为对象,仿真研究了全飞行包线下惰化系统的重要性能变化,以及关键参数对其影响。结果表明:惰化系统可以有效降低氧体积分数,如在初始满载、催化效率0.5、风机抽吸流量60 L/min条件下,24 min后氧体积分数即降至12%以下;在飞行过程中,燃油箱气相氧氧体积分数在下降及进场阶段上升,其他阶段均呈下降趋势;催化效率越高、风机抽吸流量越大,所需惰化时间越小,且催化效率一定时,达到相同惰化时间,初始空载时所需风机抽吸流量最大。应按最不利的空载工况来设计耗氧型催化惰化系统。

     

  • 图 1  3CIS系统主要部件示意图

    Figure 1.  Schematic diagram of main components of 3CIS system

    图 2  飞行马赫数和不同初始载油情况下载油率随飞行时间的变化

    Figure 2.  Variation of Mach number and fuel load rate with flight time under different initial fuel load conditions

    图 3  气相空间氧体积分数随飞行时间的变化

    Figure 3.  Variation of oxygen volume fraction on ullage with flight time

    图 4  气相空间各气体组分体积分数随飞行时间的变化

    Figure 4.  Variation of volume fraction of each gas component on ullage with flight time

    图 5  燃油箱与外界交换氧气量随飞行时间的变化

    Figure 5.  Variation of exchange of oxygen between fuel tank and environment with flight time

    图 6  惰化时间随风机抽吸流量的变化

    Figure 6.  Relationship between inerting time and fan flow

    图 7  可燃性暴露时间与飞行时间比值随风机抽吸流量的变化

    Figure 7.  Variation of flammability exposure time to flight time ratio with fan flow

    图 8  惰化系统所需冷却热量

    Figure 8.  Cooling heat required for inerting system

    图 9  惰化系统析出液态水量

    Figure 9.  Liquid water removed from inerting system

    表  1  飞行包线信息

    Table  1.   Flight envelope information

    状态 轮档时间/min 高度/m 轮档耗油/kg
    滑出 7 0 189
    起飞 2 0→457 630
    爬升 29 457→12 000 4 992
    巡航 755 12 000 67 987
    下降 21 120 00→457 373
    进场 6 457 240
    滑入 5 0 135
    下载: 导出CSV
  • [1] 冯诗愚, 刘冠男, 江荣杰, 等. 飞机燃油箱机载惰化技术研究现状与发展趋势[J]. 航空动力学报, 2021, 36(3): 616-625. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202103017.htm

    FENG S Y, LIU G N, JIANG R J, et al. Research status and development trend of aircraft fuel tank on-board inerting technology[J]. Journal of Aerospace Power, 2021, 36(3): 616-625(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI202103017.htm
    [2] LI J, YANG W, PEI Y. Vulnerability assessment for fire and explosion suppression measures of aircraft fuel system[J]. Advanced Materials Research, 2012, 510: 64-69. doi: 10.4028/www.scientific.net/AMR.510.64
    [3] 张瑞华, 刘卫华, 彭孝天, 等. 昼夜温度变化对燃油箱空余空间氧浓度的影响[J]. 北京航空航天大学学报, 2020, 46(5): 1018-1023. doi: 10.13700/j.bh.1001-5965.2019.0331

    ZHANG R H, LIU W H, PENG X T, et al. Influence of diurnal temperature changes on oxygen concentration in free space of fuel tank[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 1018-1023(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0331
    [4] LANGTON R, CLARK C, HEWITT M, et al. Aircraft fuel systems[M]. New York: Wiley, 2009: 32-40.
    [5] SMITH D E. Fuel tank inerting systems for civil aircraft[D]. Fort Collins: Colorado State University, 2014: 32.
    [6] 冯诗愚, 卢吉, 刘卫华, 等. 机载制氮系统中空纤维膜分离特性[J]. 航空动力学报, 2012, 27(6): 1332-1339. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201206020.htm

    FENG S Y, LU J, LIU W H, et al. Separation performance of hollow fiber membrane for on-board inerting gas generating system[J]. Journal of Aerospace Power, 2012, 27(6): 1332-1339(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201206020.htm
    [7] 刘夙春, 邱献双. 一种新型的飞机油箱催化惰化系统[J]. 航空科学技术, 2011(4): 27-29. https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201104011.htm

    LIU S C, QIU X S. A new fuel tank catalytically inerting system[J]. Aeronautical Science and Technology, 2011(4): 27-29(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKKX201104011.htm
    [8] 谢辉辉, 冯诗愚, 彭孝天, 等. 耗氧型惰化系统反应器性能理论[J]. 北京航空航天大学学报, 2019, 45(11): 2312-2319. doi: 10.13700/j.bh.1001-5965.2019.0117

    XIE H H, FENG S Y, PENG X T, et al. Theoretical of reactor performance in oxygen consumption based inerting system[J]. Journal of Beijing University of Aeronautics and Astronautics, 2019, 45(11): 2312-2319(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0117
    [9] WALKER S, JUNG W, ROBERTSON S. Demonstration of a novel catalyst based green on board inert gas generation system (GOBIGGSTM)for fuel tank inerting[C]//AHS 69th Annual Forum, 2013: 1-10.
    [10] MORRIS R, MILLER J, LIMAYE S. Fuel deoxygenation and aircraft thermal management[C]//4th International Energy Conversion Engineering Conference and Exhibit (IECEC). Reston: AIAA, 2006: 1-13.
    [11] 王苏明, 冯诗愚, 李宗祺, 等. 燃油箱耗氧惰化与中空膜惰化的数值模拟及比较[J]. 北京航空航天大学学报, 2020, 46(5): 1032-1038. doi: 10.13700/j.bh.1001-5965.2019.0332

    WANG S M, FENG S Y, LI Z Q, et al. Numerical simulation and comparison of oxygen consumption inerting and hollow membrane inerting in fuel tank[J]. Journal of Beijing University of Aeronautics and Astronautics, 2020, 46(5): 1032-1038(in Chinese). doi: 10.13700/j.bh.1001-5965.2019.0332
    [12] SHAO L, LIU W H, LI C Y, et al. Experimental comparison of aircraft fuel tank inerting process using NEA and MIG[J]. Chinese Journal of Aeronautics, 2018, 31(7): 1515-1524. doi: 10.1016/j.cja.2018.04.016
    [13] 陈伟, 卢京潮, 袁燎原, 等. 基于高增益观测器的航迹角自适应反步控制[J]. 北京航空航天大学学报, 2013, 39(10): 1414-1420. https://bhxb.buaa.edu.cn/CN/Y2013/V39/I10/1414

    CHEN W, LU J C, YUAN L Y, et al. Adaptive backstepping control for flight path angle based on high gain observer[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1414-1420(in Chinese). https://bhxb.buaa.edu.cn/CN/Y2013/V39/I10/1414
    [14] 冯诗愚, 邵垒, 李超越, 等. 航空燃油类型对催化惰化系统性能的影响[J]. 航空学报, 2016, 37(6): 1819-1826. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201606012.htm

    FENG S Y, SHAO L, LI C Y, et al. Performance of catalytic inerting system affected by various aviation jet fuels[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37(6): 1819-1826(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201606012.htm
    [15] 冯诗愚, 李超越, 刘卫华. 一种催化燃烧惰化油箱的装置及其方法:

    CN104843189A[P]. 2015-08-19. FENG S Y, LI C Y, LIU W H. A device and method of catalytic combustion inerting oil tank: CN104843189A[P]. 2015-08-19(in Chinese).
    [16] 彭孝天, 冯诗愚, 李超越. 一种带补气催化燃烧惰化飞行器燃油箱及控制方法:

    CN107856869A[P]. 2018-03-30. PENG X T, FENG S Y, LI C Y. Fuel tank and control method of inert vehicle with supplementary gas catalytic combustion: CN107856869A[P]. 2018-03-30(in Chinese).
    [17] CAI Y, BU X, LIN G, et al. Experimental study of an aircraft fuel tank inerting system[J]. Chinese Journal of Aeronautics, 2015, 28(2): 394-402. http://www.cnki.com.cn/Article/CJFDTotal-HKXS201502007.htm
    [18] 冯诗愚, 李超越, 邵垒, 等. 一种燃油箱绿色惰化系统地面惰化性能分析[J]. 航空动力学报, 2017, 32(2): 268-274. https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201702002.htm

    FENG S Y, LI C Y, SHAO L, et al. Analysis on ground-based inerting performance of a fuel tank green on-board inert gas generation system[J]. Journal of Aerospace Power, 2017, 32(2): 268-274(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-HKDI201702002.htm
    [19] 温博, 陆中. 民用飞机燃油箱可燃性评估方法研究[J]. 中国民航大学学报, 2016, 34(2): 6-9. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201602002.htm

    WEN B, LU Z. Research on fuel tank flammability assessment for civil aircraft[J]. Journal of Civil Aviation University of China, 2016, 34(2): 6-9(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-ZGMH201602002.htm
    [20] 康振烨, 刘振侠, 任国哲, 等. 基于MATLAB/Simulink的飞机燃油箱内燃油温度仿真计算[J]. 推进技术, 2014, 35(1): 62-69. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201401010.htm

    KANG Z Y, LIU Z X, REN G Z, et al. Simulation and calculation of fuel temperature in aircraft fuel tank based on MATLAB/Simulink[J]. Journal of Propulsion Technology, 2014, 35(1): 62-69(in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201401010.htm
    [21] 中国民用航空局. 中国民用航空规章. 第25部. 运输类飞机适航标准: CCAR-25-R4[S]. 北京: 中国民用航空局, 2011.

    Civil Aviation Administration of China. China civil aviation regulation: 25-Airworthiness standard of transport aircraft: CCAR-25-R4[S]. Beijing: Civil Aviation Administration of China, 2011(in Chinese).
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  146
  • HTML全文浏览量:  2
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-19
  • 录用日期:  2020-08-14
  • 刊出日期:  2021-08-20

目录

    /

    返回文章
    返回
    常见问答