留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超声速二方程湍流模型的数值模拟对比

刘景源 李椿萱

刘景源, 李椿萱. 高超声速二方程湍流模型的数值模拟对比[J]. 北京航空航天大学学报, 2007, 33(10): 1131-1135.
引用本文: 刘景源, 李椿萱. 高超声速二方程湍流模型的数值模拟对比[J]. 北京航空航天大学学报, 2007, 33(10): 1131-1135.
Liu Jingyuan, Lee Chunhian. Comparison of two-equation turbulent models for hypersonic flow simulations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1131-1135. (in Chinese)
Citation: Liu Jingyuan, Lee Chunhian. Comparison of two-equation turbulent models for hypersonic flow simulations[J]. Journal of Beijing University of Aeronautics and Astronautics, 2007, 33(10): 1131-1135. (in Chinese)

高超声速二方程湍流模型的数值模拟对比

详细信息
    作者简介:

    刘景源(1976-),男,吉林松原人,博士生,jjliouu@163.com.

  • 中图分类号: V 211.3

Comparison of two-equation turbulent models for hypersonic flow simulations

  • 摘要: 对基于Reynolds和Favré(密度加权)混合平均的二方程湍流模型进行了修正,同时根据数值模拟高超声速流动时必须具有高分辨率捕捉间断面与在边界层内抑制数值粘性的能力的要求,提出了新的总变差减小(TVD)格式熵修正函数.在此基础上,通过对压缩拐角的高超声速湍流的数值模拟,对基于Reynolds和Favré混合平均的二方程湍流模型,以及其它不可压缩模型及可压缩性修正模型进行了对比,显示了不同湍流模型及可压缩性修正在计算壁面压力分布和热流分布上的特点,说明了对高超声速压缩拐角型流动,湍流模型可压缩修正的必要性,得到了基于Reynolds和Favré混合平均的二方程湍流模型的计算结果最接近实验结果.

     

  • [1] Panaras A G. Review of the physics of swept-shock/boundary layer interactions[J]. Prog Aero Sci, 1996, 32:173-244 [2] Knight D, Yan H, Panarasb A G, et al. Advances in CFD prediction of shock wave turbulent boundary layer interactions[J]. Prog Aero Sci, 2003, 39:121-184 [3] Ristorcelli J R, Morrison J H. The Favr-Reynolds average distinction and a consistent gradient transport expression for the dissipation. ICASE-96-19, 1996 [4] Bertin J J, Cummings R M. Fifty years of hypersonics: where we've been, where we're going [J]. Prog Aero Sci, 2003, 39: 511-536 [5] Shyy W, Krishnamurty V S. Compressibility effects in modeling complex turbulent flows[J]. Prog Aero Sci, 1997, 33: 587-645 [6] Liu J Y, Lee C H. A two-equation model for high speed compressible turbulence Lee C H. East-West High Speed Flow Field Conference. Beijing: , 2005:422-437 [7] Grasso F, Falconi D. High-speed turbulence modeling of shock-wave/boundary-layer interaction[J]. AIAA J, 1993, 31(7): 1199-1206 [8] Chien K Y. Prediction of channel and boundary layer flows with a low Reynolds number turbulence model[J]. AlAA J, 1982, 20(1): 33-38 [9] Sinha K, Candler G V. Turbulent dissipation-rate equation for compressible flows[J]. AIAA J, 2003, 41(6): 1017-1021 [10] Chassaing P. The modeling of variable density turbulent flows - A review of first-order closure schemes[J]. Flow, Turbulence and Combustion, 2001, 66: 293-332 [11] Yee H C, Klopfer G H, Montagne J L. High-resolution shock-capturing schemes for inviscid and viscous hypersonic flows[J]. J Comp Phys, 1990, 88: 31-61 [12] Zheng B, Lee C H. The effects of limiters on high resolution computations of hypersonic flows over bodies with complex shapes[J]. Comm Nonlin Sci Numer Simul, 1998, 3(2): 82-87 [13] Lee C H, Zheng B, Wu S P. Numerical computation of hypersonic flows over complex configuration. AIAA-99-3687, 1999 [14] 周伟江, 姜贵庆. 迎风TVD格式在粘性流计算中的应用研究与改进[J]. 计算物理, 1999, 16(4): 401-408 Zhou Weijiang, Jiang Guiqing. The study and modification of upwind TVD scheme for computing viscous flows[J]. Chinese J Comp Phys, 1999, 16(4): 401-408 (in Chinese) [15] Settles G S, Dodson L J. Hypersonic shock/boundary-layer interaction database. NASA-CR-177577, 1991
  • 加载中
计量
  • 文章访问数:  2535
  • HTML全文浏览量:  3
  • PDF下载量:  1130
  • 被引次数: 0
出版历程
  • 收稿日期:  2006-10-24
  • 刊出日期:  2007-10-31

目录

    /

    返回文章
    返回
    常见问答