随着航空航天领域对结构振动的要求越来越严格,传统的振动控制很难满足设计要求,振动主动控制成为目前研究的热点之一.振动主动控制系统针对低频振动控制具有效果好、重量轻等优点,但是其存在对不确定性较为敏感、可靠性低的缺点.然而,在工程实际中,不确定性是普遍存在的,不确定性不仅可以降低主动控制系统的性能,而且可能使主动控制系统不稳定[1].因此,有必要研究结构振动主动控制系统的可靠性分析方法,以便更好地指导控制器的设计.
近几年来,闭环控制系统的可靠性问题受到了越来越多的关注,并取得了一些研究成果.Spencer等提出了闭环控制系统稳定性的概率分析方法[2],利用特征值和Routh-Hurwitz判别准则分别研究了系统的可靠性问题.Breitung等研究了基于可靠性的非线性控制器稳定性分析方法[3].Battaini等考虑激励的随机性和系统参数的不确定性,并结合响应面近似方法和FORM/SORM研究了模糊控制器性能的可靠性[4].Crespo和Kenny研究了基于可靠性的不确定控制系统设计方法[5],将不确定参数处理为随机变量,系统的响应处理为随机过程,采用首次穿越率方法来计算可靠度.Guo等研究了以稳定性作为指标的非概率鲁棒可靠性分析方法,并将其应用于控制器设计,取得了较好的效果[6,7,8].Venini和Mariani提出了一种状态空间框架下的不确定系统受随机激励时的可靠性分析方法[9],该方法可以运用于现代鲁棒控制技术如H2,H∞和线性二次高斯型(LQG).Li等研究了随机结构的响应分析方法和动力可靠度分析方法[10,11],并基于首次穿越方法提出了一种新的动力可靠度分析方法.
从目前的研究成果来看,结构振动主动控制系统的可靠性分析方法大都将外部激励和结构参数处理为随机变量,并结合传统的可靠性分析方法进行.可靠性分析主要集中于系统稳定性,对闭环控制系统性能的可靠性分析较少,且集中于Crandall提出的首次穿越理论[12].然而,当不确定参数的可用数据较少,以至于无法得到其概率密度分布时,随机方法就显得无能为力了.区间数作为处理不确定性问题的有效手段之一,不需要变量的概率密度,只需上下界就可以对不确定量进行描述.王晓军等利用区间数描述不确定量,基于概率干涉模型,提出了可靠度分析的非概率干涉模型[13,14].郭书祥等提出了一种基于无穷范数的非概率可靠性指标,并研究了相应的求解方法[15,16].这些非概率可靠性分析方法在结构强度分析中已经得到了广泛应用,但在结构振动控制领域还没有这方面的研究.随着工业水平的提高及对工程结构设计精细化程度要求的不断提高,非概率可靠性分析方法在结构振动控制领域将会受到更多的重视,这也是本文思想的来源之一.
本文将非概率可靠性分析方法应用于结构振动主动控制系统,利用区间数对结构参数不确定性进行定量化,通过区间参数摄动法得到闭环控制系统响应的区间集,结合可靠度分析的非概率干涉模型提出了结构振动主动控制系统可靠度分析的非概率方法.针对某型飞机弹舱的主动控制系统进行了非概率可靠性分析,数值算例验证了本文所提方法的有效性和高效性.
1 不确定结构振动主动控制方程
考虑如下具有n自由度的系统,其在外部载荷和控制力共同作用下的有限元方程为






为了便于讨论,对于实际工程系统不直接采用这种状态空间转换,而是采用模态展开的方法得到系统的状态空间方程.由于系统的动力学行为主要由前几阶模态决定,因此利用这种方法可以有效地减少系统的自由度,从而减少计算量,提高计算效率.由结构动力学的知识可知,利用如下的坐标转换:





为了满足对结构动力响应的要求(在时间t1和t2之间系统的响应不应大于给定值Ycr),即


由于结构在生产、制造、加工及安装等方面存在各种的不确定性.同时,关于系统的各种参数的试验数据又是有限的,不足以用来确定各不确定性量的概率密度函数.笔者假定结构的各种不确定参数在一区间范围内变化,即


将式(9)代入式(11)则可得闭环控制系统的状态空间为

由于不确定性的存在,利用名义矩阵求得的控制器施加在结构上时,结构的动力响应并不一定能够满足设计要求(式(8)).也就是说主动控制系统在不确定性因素的影响下,有可能失效(不可靠).因此,有必要分析这种不确定对主动控制系统的影响,对结构振动主动控制系统进行可靠性分析,以便改进控制器的设计提高系统的可靠度. 2 闭环控制系统非概率可靠性度量
传统的动力学可靠性分析方法以结构的动力响应首次超越临界值为标志,通常称为首次穿越问题.一般情况下,动力学可靠性分析将系统响应处理为稳态高斯随机过程.如果响应值小于给定的临界值,则系统安全,否则失效.这种可靠性计算方法只适于分析确定系统受到随机激励的情况.本文则从结构的不确定性方面出发,对结构振动主动控制系统进行分析,首先假定在时间[t1,t2]内,系统响应只有1次可能超过临界值,如图 1所示.
![]() |
图 1 系统动力响应穿过阈值的可能次数Fig. 1 Possible times of dynamic response across the threshold |
定义如下的极限状态方程:




由于结构参数的不确定性,闭环控制系统在时间[t1,t2]内真实响应的最大值S也是不确定的,根据第3节中提出的含区间不确定参数的闭环控制系统响应分析方法,可以得到S的区间范围SI.在实际工程中,尤其是航空航天领域的结构振动主动控制系统,设计要求一般也是不确定的,即闭环控制系统所允许的最大响应Rcr也属于区间范围内,即Rcr∈RcrI.这样闭环控制系统非概率可靠性度量就转换为两个区间数之间大小的比较.王晓军等提出一种区间数比较大小的方法[13].在二维空间中,变量S和Rcr的变化空间为变量所围成的面积.这个空间被失效平面(g=0)分为安全域和失效域两部分,如图 2所示.
![]() |
图 2 非概率可靠度计算示意图Fig. 2 Schematic diagram of non-probabilistic reliability calculating |
当响应量S小于给定的允许值Rcr时,g>0,即系统是安全的,因此称响应量小于给定的允许值的可能性度量称为结构振动主动控制系统的非概率可靠度,定义为安全域面积与不确定变量所围面积之比,即

相应的结构振动主动控制系统失效的可能性度量可以定义为失效域面积与不确定变量所围面积之比,即

当然如果极限状态方程含有的区间变量大于两个,则区间变量所围成的区域为长方体或超长方体,此时,非概率可靠度可以定义为安全区域的超体积与总体积的比值.当然,如果极限状态方程具有非线性的形式,这种非概率可靠度的定义方法也是适用的.当阈值为某一确定数时,非概率可靠性模型就退化成数轴上长度之比.
当在时间[t1,t5]内,系统响应有多次可能超过阈值时,如图 1所示,则时间[t1,t5]内系统的可靠度可以定义为

由前面两节可以看出,在得到闭环控制系统响应的区间后才能对其可靠性进行度量.为了分析闭环控制系统的可靠性,首先要明确不确定性在闭环控制系统中是如何传播的.考虑如式(12)所示的闭环控制系统,首先要找到所有满足状态空间方程(12)的解.很容易看出:当参数B变化时,满足方程的解有无穷多个,这些解组成如下的响应集合:






依据区间数学中的表示方法,区间变量bI的均值(名义值或中值)和半径(不确定范围)可以分别表示为

基于区间数学和区间运算,结构参数不确定量b可以分解为确定性部分和不确定部分(名义值和不确定半径):




为了表达简洁,式(25)中忽略了时间变量t,由于结构参数的变化为较小的量,因此可以在其均值附近将系统响应进行泰勒展开,即







经过上面的推导,已经得到了系统响应的区间上下界,由式(13)极限状态函数可以看出,要想计算系统的可靠度,需要得到系统响应S=在给定的时间[t1,t2]内的区间范围SI.在时间[t1,t2]内,由于系统响应只有1次可能性穿越阈值,因此,定义系统响应S=
的区间为

一般情况下上式中的优化问题会在同一时间t′达到.对于系统响应对某一参数特别敏感或者系统不稳定时,上式的优化问题可能不会在同一时间出现,利用上式得到的区间会变窄,计算的可靠度会变小,计算结果会偏向保守,但这不影响该公式的适用. 4 数值算例 4.1 二自由度弹簧-质量-阻尼器振动主动控制系统的可靠性分析
考虑如图 3所示的二自由度弹簧-质量-阻尼器系统.
![]() |
图 3 二自由度弹簧-质量-阻尼器振动系统 Fig. 3 Two-degrees of freedom mass-spring-damper vibration system |
系统参数如下:m1=10 kg,m2=10 kg,k1=20 N/m,k2=15 N/m,c1=3 N·s/m,c1=2 N·s/m .由于制造、加工及安装过程中存在着大量误差,假定系统的参数为区间数,分别为m1I=[7,13]kg,mI2=[7,13]kg,k1I=[17,23]N/m,kI2=[12,18]N/m,c1I=[2,4]N·s/m,cI2=[1,3]N·s/m.控制力作用在质量块m1上,输出量为质量块m2的位移.弹簧质量可以忽略不计,不考虑摩擦等能量损失.根据最小势能原理,可以建立如下的二自由度弹簧-质量-阻尼器系统的有限元方程:



状态变量为,系统的初始状态为x0=[0 1 1 0]T,控制目标为在t∈[2,∞] 的时间内,系统的响应绝对值不允许超过0.35 m,即
.根据最优控制理论和名义系统求出的控制器为G=[3 0 1 3]T.图 4给出了开环系统和闭环控制系统输出的名义值,从图中可以看出,名义闭环控制系统是满足控制要求的,即,t∈[2,∞]的时间内,系统的响应绝对值不超过0.35 m.但是由于系统存在不确定性,闭环系统的响应会出现波动,此时,闭环系统的响应就有可能超过给定的阈值.由图 5可以看出,当结构参数发生变化时,闭环控制系统响应下界的绝对值已经超过了0.35 m,也就是说依照名义系统设计的控制器,当真实用于实际时可能会不可靠.
![]() |
图 4 控制前与控制后系统的响应输出Fig. 4 Comparison between responses of open-loop and closed-loop system |
![]() |
图 5 区间闭环控制系统响应上下界Fig. 5 Interval bounds of interval closed-loop system |
利用本文提出的非概率可靠度分析方法,表 1给出了这种控制器下闭环系统性能的可靠度分析结果.蒙特卡洛(Monte Carlo)分析方法是通过随机抽样方法对不确定结构进行分析的最常用工具,当样本数足够多时,可靠性分析的结果趋于解析解.因此,为了验证本文所提方法的优越性,采用蒙特卡洛方法进行对比.蒙特卡洛仿真模拟中,样本数为10 000,均匀分布抽样.所采用计算机的性能:CPU,Intel®CoreTMi7-2600,3.4 GHz,内存16 GB.
方法 | 响应最大值的上界/m | 名义值(均值)/m | 响应最大值的下界/m | 计算时间/s | 可靠度/% |
蒙特卡洛 | 0.104 4 | 0.208 2 | 0.351 4 | 177.553 | 99.9 |
非概率 | 0.053 2 | 0.203 95 | 0.354 7 | 0.147 | 98.4 |
由表 1可以看出,本文所提方法计算的闭环控制系统的可靠度要低于蒙特卡洛方法得到的可靠度,响应的区间范围也比蒙特卡洛方法得到的区间范围要大,这主要是由于在求解区间响应时,区间运算所带来的区间扩张引起的.这也再次说明了本文所提方法的保守性.从表 1中还可以很清楚地看到蒙特卡洛方法所用时间远远大于非概率可靠度分析方法.本例中系统的失效概率是非常小的,因此蒙特卡洛方法需要大量的抽样才能得到较为准确的结果,而非概率可靠度计算方法则不受样本的影响,只与不确定变量的边界有关,由此也可以说明本文所提出的非概率可靠度分析方法的高效性. 4.2 某型飞机弹舱 振动主动控制系统的可靠性分析
为了说明本文所提方法在实际工程中的可应用性,将本文所提方法应用于某型飞机弹舱结构的振动主动控制系统.考虑如图 6所示的某型飞机弹舱,由于此弹舱为一封闭空腔结构,在飞机高速飞行的情况下,外部不稳定气流作用在弹性壁面上,很容易引起结构声的耦合效应,过高的振动响应和声响应会对弹舱内部的设备造成损害,因此对弹性板(图 6中阴影部分)的振动进行主动控制就显得尤为重要.
![]() |
图 6 某型飞机弹舱振动与噪声主动控制模型Fig. 6 Active control of vibration and noise model of an aircraft bomb bay |
如图 6所示,5个刚性面和1个弹性面均为铝合金材料,弹性模量E=68 GPa,泊松比μ=0.3,密度ρ=2770 kg/m3,结构阻尼为比例阻尼P=αM +βK ,α=5.5,β=1.8×10-5.弹性面的厚度h1=1.8 mm,刚性面厚度h2=20 mm.不确定量为弹性板的厚度和模量:分别为h1I=[1.6,2.0]mm 和EI=[66,70]GPa.由于弹性板上安放一个传感器和两个驱动器,因此,该闭环系统为多输入单输出系统.由图 7可以看出,驱动器与传感器均没有放置在弹性板振动模态的节线上,这样就保证了系统的可控性和可观性.控制要求为系统在受到脉冲载荷时,在整个响应时间内传感器位置的振动幅值不能超过5 mm,即
![]() |
图 7 弹性板的前两阶振动模态Fig. 7 The first two vibration modal of elastic plate |
弹性板采用四结点壳单元进行有限元划分,网格如图 7所示,400个单元,451个节点,1 353个自由度,因此,采用式(7)建立其主动控制模型的状态空间方程(q=10),选取前10阶振动模态,响应的前10阶频率在表 2中已经给出.利用线性二次型控制器(LQR)最优控制理论,设定相应的加权矩阵,求解得到控制器为

阶数 | 1 | 2 | 3 | 4 | 5 |
频率/Hz | 83.2 | 90.8 | 99.0 | 110.5 | 126.4 |
阶数 | 6 | 7 | 8 | 9 | 10 |
频率/Hz | 147.1 | 172.4 | 202.4 | 221.7 | 236.7 |
图 8给出了弹性板控制前后的响应输出.
![]() |
图 8 弹性板控制前与控制后系统的响应输出Fig. 8 Open-loop and closed-loop system responses of elastic plate |
图 9给出了考虑不确定时,闭环控制系统响应区间上下界,由图中可以看出闭环控制系统的响应有可能不满足设计要求,即弹性板在传感器位置的振动幅值超过5 mm.将时间段[0,0.1]划分为多个时间段后,只有包含0.01 s的时间段内计算的可靠度不等于1,其他时间段内的可靠度均等于1.表 3中只给出了包含0.01 s的时间段内的可靠度,其与总的可靠度是一致的.与算例1类似,本算例同样采用蒙特卡洛方法与非概率方法进行对比.表 3给出了非概率可靠度分析方法与蒙特卡洛方法的对比,从中可以看出非概率可靠性分析方法的高效性和实用性.
![]() |
图 9 闭环控制系统响应上下界Fig. 9 Interval bounds of interval closed-loop system |
方法 | 响应 绝对值的 上界/mm | 名义值 (均值)/ mm | 响应 绝对值的 下界/mm | 计算 时间/s | 可靠度/% |
蒙特卡洛 | 4.039 | 4.450 | 5.051 | 27 424.7 | 98.1 |
非概率 | 3.473 | 4.288 | 5.108 | 16.439 | 93.0 |
本文基于非概率可靠度分析方法研究了结构振动主动控制系统的可靠性问题.采用区间数量化结构参数的不确定性,建立了闭环控制系统的非概率可靠性指标,并提出了相应的计算方法.
1) 与传统概率方法(蒙特卡洛)相比,本文所提出的非概率可靠性分析方法,所需计算时间更短,计算结果更加保守,尤其适用于无法得到不确定量概率信息的复杂大型结构振动主动控制系统.
2) 本文基于非概率可靠性分析模型提出了一种解决结构动力学可靠性问题的方法,该方法可以适用于传统的开环动力学系统.
3) 本文的研究内容为基于可靠性的振动主动控制器设计提供了新的研究思路,为新型飞机设计过程中采用结构振动主动控制技术提供了理论依据与技术基础.
[1] | Soong T T. Active structural control:theory and practice[M].Harlow,Essex:Longma,1990. |
[2] | Spencer Jr B F, Sain M K,Kantor J C,et al.Probabilistic stability measures for controlled structures subject to real parameter uncertainties[J].Smart Materials and Structures,1992:294. |
Click to display the text | |
[3] | Breitung K, Casciati F,Faravelli L.Reliability based stability analysis for actively controlled structures[J].Engineering Structures,1998,20(3):211-215. |
Click to display the text | |
[4] | Battaini M, Breitung K,Casciati F,et al.Active control and reliability of a structure under wind excitation[J].Journal of Wind Engineering and Industrial Aerodynamics,1998,74:1047-1055. |
Click to display the text | |
[5] | Crespo L G, Kenny S P.Reliability-based control design for uncertain systems[J].Journal of Guidance,Control,and Dynamics,2005,28(4):649-658. |
Click to display the text | |
[6] | Guo S, Li Y.Non-probabilistic reliability method and reliability-based optimal LQR design for vibration control of structures with uncertain-but-bounded parameters[J].Acta Mechanica Sinica,2013,29(6):864-874. |
Click to display the text | |
[7] | Guo S. Robust reliability as a measure of stability of controlled dynamic systems with bounded uncertain parameters[J].Journal of Vibration and Control,2010,16(9):1351-1368. |
Click to display the text | |
[8] | Guo S. Robust reliability method for non-fragile guaranteed cost control of parametric uncertain systems[J].Systems & Control Letters,2014,64:27-35. |
Click to display the text | |
[9] | Venini P, Mariani C.Reliability as a measure of active control effectiveness[J].Computers & Structures,1999,73(1):465-473. |
[10] | Chen J, Li J.Dynamic response and reliability analysis of non-linear stochastic structures[J].Probabilistic Engineering Mechanics,2005,20(1):33-44. |
Click to display the text | |
[11] | Li J, Chen J B.Dynamic response and reliability analysis of structures with uncertain parameters[J].International Journal for Numerical Methods in Engineering,2005,62(2):289-315. |
Click to display the text | |
[12] | Crandall S H. First-crossing probabilities of the linear oscillator[J].Journal of Sound and Vibration,1970,12(3):285-299. |
Click to display the text | |
[13] | 王晓军, 邱志平,武哲.结构非概率集合可靠性模型[J].力学学报,2007,39(5):641-646. Wang X J,Qiu Z P,Wu Z.Non-probabilistic set-based model for structural reliability[J].Chinese Journal of Theoretical and Applied Mechanics,2007,39(5):641-646(in Chinese). |
Cited By in Cnki (24) | |
[14] | 王晓军, 邱志平.结构振动的鲁棒可靠性[J].北京航空航天大学学报,2003,29(11):1006-1010. Wang X J,Qiu Z P.Robust reliability of structural vibration[J].Journal of Beijing University of Aeronautics and Astronautics,2003,29(11):1006-1010(in Chinese). |
Cited By in Cnki (10) | |
[15] | 郭书祥, 吕震宙,冯元生.基于区间分析的结构非概率可靠性模型[J].计算力学学报,2001,18(1):56-60. Guo S X,Lü Z Z,Feng Y S.A non-probabilistic model of structural reliability based on interval analysis[J].Chinese Journal of Computational Mechanics,2001,18(1):56-60(in Chinese). |
Cited By in Cnki (295) | |
[16] | 郭书祥, 张陵,李颖.结构非概率可靠性指标的求解方法[J].计算力学学报,2005,22(2):227-231. Guo S X,Zhang L,Li Y.Procedures for computing the non-probabilistic reliability index of uncertain structures[J].Chinese Journal of Computational Mechanics,2005,22(2):227-231(in Chinese). |
Cited By in Cnki (89) |