ZHANG Li, MA Yanhong, LIANG Zhichao, et al. Constraint model and vibration response analysis of rotor rub-impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(9): 1631-1637. doi: 10.13700/j.bh.1001-5965.2014.0647(in Chinese)
Citation: Xu Yan, Yang Yuanxi, Xu Guochang, et al. Ionospheric delay in the Antarctic GPS positioning[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39(10): 1370-1375. (in Chinese)

Ionospheric delay in the Antarctic GPS positioning

  • Received Date: 13 Dec 2012
  • Publish Date: 30 Oct 2013
  • Based on the global position system(GPS) dual-frequency measured data of international GNSS service (IGS) station in Antarctic region, the variation of ionospheric delay and the impact of ionospheric second-order delay on GPS positioning was analyzed. Result shows, total electron content(TEC) in Antarctic region has frequent fluctuation during the day and the maximum TEC in the daytime changes more intensely than in the mid-latitude area. In Antarctic region, the influence of ionospheric second-order delay on GPS positioning can achieve a magnitude of cm in summer. In case of the applied limitation of global ionosphere maps(GIM) provided by the European Center for orbit determination(CODE) in the polar area, six IGS stations in Antarctic region were chosen as base stations to establish the regional ionosphere model(RIM). Results show, in Antarctic region the positioning precision of RIM is more superior than GIM to some extent.

     

  • [1] 袁运斌.基于GPS的电离层监测及延迟改正理论与方法的研究[D].北京:中国科学院研究生院,2002 Yuan Yunbin.Study on theories and methods of correcting ionospheric delay and monitoring ionosphere based on GPS[D].Beijing:Graduate University of Chinese Academy of Sciences,2002(in Chinese) [2] 涂锐.GPS单频精密单点定位与区域电离层模型研究[D].西安:长安大学,2010 Tu Rui.A study of GPS single frequency precise point positioning and regional ionosphere model[D].Xi-an:Chang-An University,2010(in Chinese) [3] 许承权.单频GPS精密单点定位算法研究与程序实现[D].武汉:武汉大学,2008 Xu Chengquan.The algorithm research and software development of single frequency precise point positioning[D].Wuhan:Wuhan University,2008(in Chinese) [4] 李征航,黄劲松.GPS测量与数据处理[M].武汉:武汉大学出版社,2010 Li Zhenghang,Huang Jinsong.GPS surveying and data processing[M].Wuhan:Wuhan University Press,2010(in Chinese) [5] 孟泱,安家春,王泽民,等.基于GPS的南极电离层电子总含量空间分布特征研究[J].测绘学报,2011,40(1):37-40 Meng Yang,An Jiachun,Wang Zemin,et al.Spatial distribution of Antarctic ionosphere TEC based on GPS[J].Acta Geodaetica et Cartographica Sinica,2011,40(1):37-40(in Chinese) [6] 孟泱,安家春,王泽民,等.基于GPS的南极中山站电离层TEC特征研究[J].大地测量与地球动力学,2010,30(1): 43-47 Meng Yang,An Jiachun,Wang Zemin,et al.Research based on characteristics of TEC at Antarctic Zhongshan station based on GPS[J].Journal of Geodesy and Geodynamics,2010,30(1): 43- 47 (in Chinese) [7] Brunner F K,Gu M.An improved model for the dual frequency ionospheric correction of GPS observations[J].Manuscr Geod,1991,16:205-214 [8] 刘西凤,袁运斌,霍星亮,等.电离层二阶项延迟对GPS定位影响的分析模型与方法[J].科学通报,2010,55(12):1162-1167 Liu Xifeng,Yuan Yunbin,Huo Xingliang,et al.Model analysis method on the effect of the second-order ionospheric delay on GPS positioning solution[J].Chinese Sci Bull,2010,55(12):1162-1167(in Chinese) [9] Kedar S,Hajj A,Wilson B D,et al.The effect of the second order GPS ionospheric correction on receiver positions[J].Geophys Res Lett,2003,30(16):1829-1832 [10] 张双成,涂锐,张勤,等.电离层二阶项模型的构建及其变化规律分析研究[J].测绘学报,2011,40(增刊):105-110 Zhang Shuangcheng,Tu Rui,Zhang Qin,et al.The establishment of ionospheric second-order model and the analysis of ionospheric variation[J].Acta Geodaetica et Cartographica Sinica,2011,40(Supplement):105-110(in Chinese) [11] 蔡昌盛,高井祥,李征航.利用GPS监测电离层总电子含量的季节性变化[J].武汉大学学报:信息科学版,2006,31(5):451-453 Cai Changsheng,Gao Jingxiang,Li Zhenghang.Monitoring seasonal variations of ionospheric TEC using GPS measurements[J].Geomatics and Information Science of Wuhan University,2006,31(5):451-453(in Chinese) [12] Elsobeiey M,EI-Rabbany A.GPS precise point positioning:some recent developments[R].S4-01,2011 [13] Lutz S,Schaer S,Meindl M,et al.Higher-order ionosphere modeling for CODE's next reprocessing activities[R].P71,2010 [14] Dach R,Hugentobler U,Fridez P,et al.Bernese GPS software Version5.0[M].Switzerland:Astronomical Institute,University of Berne,2007
  • Relative Articles

    [1]LI Huan, CUI Pengcheng, JIA Hongyin, GONG Xiaoquan, WU Xiaojun. Numerical Simulation of TSTO Interstage Separation Considering Constraint Force[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2024.0839
    [2]ZHOU Y J,WAN Q,XU Y Z,et al. Redundancy design of a FADS system on a complex leading-edge vehicle using neural network approach[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):757-764 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0341.
    [3]XU C H,PI S Y,HU S Y,et al. Analysis of catch ratio distribution on windward facade of a cubic building under a crosswind environment[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(11):3507-3520 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0862.
    [4]LI C Q,ZHAN Y Q,WANG Z M,et al. Numerical simulation of iliac vein compression syndrome in hemodynamics[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(8):2646-2654 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0693.
    [5]LEI J M,WU Z X,XIE W Y. Numerical simulation investigation on water surface skipping motion characteristics of sea-skimming projectile[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(10):2975-2983 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0813.
    [6]CHEN B,LUO L,JIANG A L,et al. Numerical simulation of separation characteristics for internally buried weapon at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(7):2113-2122 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0627.
    [7]ZHANG P H,CHEN H Y,ZHANG J,et al. Passive flow control for weapon bay at high Mach number[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(11):2913-2920 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0790.
    [8]GAO J C,CHEN W J,HU W J,et al. Analysis of CO2 distribution characteristics in cabin of civil aircraft[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(9):2510-2517 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0683.
    [9]ZHANG P H,CHENG X H,CHEN H Y,et al. Unsteady flow mechanism of high Mach number cavity[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):1940-1947 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0609.
    [10]HE Z P,ZHOU J X,XIN J,et al. Unsteady flow characteristics of turbine rotor passage under rim seal effect[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(2):273-283 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0223.
    [11]SANG Z K,ZHAO R,CHENG W L. Study on temperature control characteristics of low-resistivity ceramic-based PTC material[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(8):2147-2153 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0602.
    [12]ZHANG Pei-hong, JIA Hong-yin, ZHAO Jiao, WU Xiao-jun, ZHOU Gui-yu, ZHANG Yao-bing. Numerical simulation research on opposing jet interaction characteristics of rocket inverse flight[J]. Journal of Beijing University of Aeronautics and Astronautics. doi: 10.13700/j.bh.1001-5965.2023.0710
    [13]ZHANG P H,TANG Y,TANG J,et al. Simulation of cavity flow at high Mach number based on adaptive unstructured hybrid mesh[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(6):1311-1318 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0424.
    [14]HAN Y F,HU X S,GAO Y,et al. Comparison of turbulence models for unsteady flow simulation in a long and narrow cabin[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(4):957-964 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0335.
    [15]PENG L,LI L,ZHAO W. Numerical study on coupled heat transfer of rotating disc in centrifugal atomization[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(12):3456-3466 (in Chinese). doi: 10.13700/j.bh.1001-5965.2022.0152.
    [16]XIE N,TANG Y M,ZHANG Y,et al. Numerical study of blood pump weaning effects on hemocompatibility of centrifugal blood pump[J]. Journal of Beijing University of Aeronautics and Astronautics,2023,49(7):1680-1688 (in Chinese). doi: 10.13700/j.bh.1001-5965.2021.0494.
    [17]WANG Weiqi, XING Yuming, ZHENG Wenyuan, HAO Zhaolong. Phase change heat transfer characteristics and fractal optimization of radial plate fin tube[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2520-2528. doi: 10.13700/j.bh.1001-5965.2021.0140
    [18]GUO Qi, SHEN Xiaobin, LIN Guiping, ZHANG Shijuan. Numerical simulation of icing on aircraft rotating surfaces[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(11): 2259-2269. doi: 10.13700/j.bh.1001-5965.2021.0081
    [19]WENG Huiyan, CAI Guobiao, ZHENG Hongru, LIU Lihui, ZHANG Baiyi, HE Bijiao. Numerical simulation of effect of background pressure on electric propulsion plume field[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(10): 1854-1862. doi: 10.13700/j.bh.1001-5965.2021.0039
    [20]ZHANG Chao, LIU Jianchun, FANG Xin. Damage analysis in composite laminates under low velocity oblique impact[J]. Journal of Beijing University of Aeronautics and Astronautics, 2022, 48(12): 2388-2397. doi: 10.13700/j.bh.1001-5965.2021.0154
  • Cited by

    Periodical cited type(1)

    1. 句子涵,于坤洋,李强,胡定华. 石墨/铝合金复合导热板强化石蜡相变蓄热研究. 工程热物理学报. 2023(12): 3399-3406 .

    Other cited types(3)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views(1751) PDF downloads(1134) Cited by(4)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return