Volume 50 Issue 3
Mar.  2024
Turn off MathJax
Article Contents
LI M J,GUO Z H. Combustion instability analysis of pilot flame in model combustor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):951-961 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0274
Citation: LI M J,GUO Z H. Combustion instability analysis of pilot flame in model combustor[J]. Journal of Beijing University of Aeronautics and Astronautics,2024,50(3):951-961 (in Chinese) doi: 10.13700/j.bh.1001-5965.2022.0274

Combustion instability analysis of pilot flame in model combustor

doi: 10.13700/j.bh.1001-5965.2022.0274
Funds:  National Science and Technology Major Project (2017-Ⅲ-0008-0034)
More Information
  • Corresponding author: E-mail:guozhihui@buaa.edu.cn
  • Received Date: 25 Apr 2022
  • Accepted Date: 12 Aug 2022
  • Available Online: 16 Sep 2022
  • Publish Date: 14 Sep 2022
  • To address he combustion instability of pilot flame in the model combustor, the multi-point dynamic pressure and flame images are experimentally measured in the combustor, and analyzed by means of fast Fourier analysis and proper orthogonal decomposition(POD). It is observed that with the increase of the equivalence ratio, two bifurcations occur with limit cycle oscillations, and the corresponding unstable modes correspond to the third-order and second-order intrinsic longitudinal acoustic modes of the system. The POD results show that the vortex-acoustic frequency lock-in occurs at the longitudinal acoustic mode frequency of the combustor, and the acoustic-vortex-flame coupling instability process occurs in the combustor. On the one hand, large-scale vortex shedding increases sound energy output by altering the flame area and producing severe oscillations in heat release with an increase in equivalency ratio. Conversely, as the angle between two flame branches increases, the main wave direction of the flame position is along the same axis as the main acoustic wave. The modal transition takes place when two factors come into play: the thermoacoustic coupling becomes easier, and the phase angle of the pressure pulsation and heat release pulsation coupling lowers.

     

  • loading
  • [1]
    金莉, 谭永华. 火焰稳定器综述[J]. 火箭推进, 2006, 32(1): 30-34.

    JIN L, TAN Y H. Review of flame stabilizer[J]. Journal of Rocket Propulsion, 2006, 32(1): 30-34 (in Chinese).
    [2]
    LOVETT J, BROGAN T, PHILIPPONA D, et al. Development needs for advanced afterburner designs[C]//Proceedings of the 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit. Reston: AIAA, 2004: 4192.
    [3]
    LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines: Operational experience, fundamental mechanisms, and modeling[M]. Reston: American Institute of Aeronautics and Astronautics, 2005: 4.
    [4]
    HAN X, LAERA D, MORGANS A S, et al. Inlet temperature driven supercritical bifurcation of combustion instabilities in a lean premixed prevaporized combustor[J]. Experimental Thermal and Fluid Science, 2019: 109: 109857.
    [5]
    SHANBHOGUE S J, HUSAIN S, LIEUWEN T. Lean blowoff of bluff body stabilized flames: Scaling and dynamics[J]. Progress in Energy and Combustion Science, 2009, 35(1): 98-120. doi: 10.1016/j.pecs.2008.07.003
    [6]
    TUTTLE S G, CHAUDHURI S, KOPP-VAUGHAN K M, et al. Lean blowoff behavior of asymmetrically-fueled bluff body-stabilized flames[J]. Combustion and Flame, 2013, 160(9): 1677-1692.
    [7]
    LUBARSKY E, CROSS C, FRICKER A, et al. Dynamics of V-gutter-stabilized Jet-A flames in a single flame holder combustor with full optical accesss[C]//Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference &Exhibit. Reston: AIAA, 2009: 5291.
    [8]
    POINSOT T J, TROUVE A C, VEYNANTE D P, et al. Vortex-driven acoustically coupled combustion instabilities[J]. Journal of Fluid Mechanics. 2006, 177: 265-292.
    [9]
    PILLAI A L, NAGAO J, AWANE R, et al. Influences of liquid fuel atomization and flow rate fluctuations on spray combustion instabilities in a backward-facing step combustor[J]. Combustion and Flame, 2020, 220: 337-356. doi: 10.1016/j.combustflame.2020.06.031
    [10]
    LIU W J, WANG H, YANG Q, et al. Flow dynamics in a multiswirler model combustor based on large eddy simulation and proper orthogonal decomposition analysis[J]. Journal of Engineering for Gas Turbines and Power, 2019, 141(12): 121014.
    [11]
    LIU W J, XUE R, ZHANG L, et al. Nonlinear response of a premixed low-swirl flame to acoustic excitation with large amplitude[J]. Combustion and Flame, 2022, 235: 2180.
    [12]
    KIM K T, LEE J G, QUAY B D, et al. Response of partially premixed flames to acoustic velocity and equivalence ratio perturbations[J]. Combustion and Flame, 2010, 157: 1731-1744. doi: 10.1016/j.combustflame.2010.04.006
    [13]
    SHANBHOGUE S, SHIN D H, HEMCHANDRA S, et al. Flame sheet dynamics of bluff-body stabilized flames during longitudinal acoustic forcing[J]. Proceedings of the Combustion Institute. 2009, 32(2): 1787-1794.
    [14]
    BENJAMIN A B, SATHESH M. Lock-in phenomenon of vortex shedding in flows excited with two commensurate frequencies: A theoretical investigation pertaining to combustion instability[J]. Journal of Fluid Mechanics, 2021, 925(409): 9.
    [15]
    EMERSON B, MONDRAGON U, ACHARYA V, et al. Velocity and flame wrinkling characteristics of a transversely forced, bluff-body stabilized flame, Part Ⅰ: Experiments and data analysis[J]. Combustion Science and Technology, 2013, 185: 1056-1076.
    [16]
    LI H G, SUNG H, YANG V. Large eddy simulation of combustion dynamics of bluff body stabilized flame[C]//Proceedings of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. Reston: AIAA, 2011: 783.
    [17]
    EMERSON B, LIEUWEN T. Dynamics of harmonically excited, reacting bluff body wakes near the global hydrodynamic stability boundary[J]. Journal of Fluid Mechanics, 2015, 779: 716-750.
    [18]
    AHN M, LIM D, KIM T, et al. Pinch-off process of Burke–Schumann flame under acoustic excitation[J]. Combustion and Flame, 2021, 231: 111478-111488. doi: 10.1016/j.combustflame.2021.111478
    [19]
    FUGGER C A, CASWELL A W. The influence of spanwise nonuniformity on lean blowoff in bluff body stabilized turbulent premixed flames[J]. Proceedings of the Combustion Institute, 2021, 38(4): 6327-6335. doi: 10.1016/j.proci.2020.06.145
    [20]
    KOSTKA S, LYNCH A C, HUELSKAMP B C, et al. Characterization of flame-shedding behavior behind a bluff-body using proper orthogonal decomposition[J]. Combustion and Flame, 2012, 159(9): 2872-2882. doi: 10.1016/j.combustflame.2012.03.021
    [21]
    RICHARDS A, JANUS M C. Characterization of oscillations during premix gas turbine combustion[J]. Journal of Engineering for Gas Turbines and Power, 1998, 120(2): 294-302. doi: 10.1115/1.2818120
    [22]
    王欣尧, 韩啸, 林宇震, 等. 中心分级旋流火焰中热声不稳定分岔现象研究[J]. 燃烧科学与技术, 2021, 27(4): 382-387.

    WANG X Y, HAN X, LIN Y Z, et al. Research on thermoacoustic instability bifurcation phenomenon in centrally graded swirling flames[J]. Combustion Science and Technology, 2021, 27(4): 382-387(in Chinese).
    [23]
    LI J X, MORGANS A S. Time domain simulations of nonlinear thermoacoustic behaviour in a simple combustor using a wave-based approach[J]. Journal of Sound and Vibration, 2015, 346: 345-360. doi: 10.1016/j.jsv.2015.01.032
    [24]
    TAKENS F. Detecting strange attractors in turbulence[C]//Dynamic Systems and Turbulence, Warwick 1980. Berlin: Springer, 1981: 366-381.
    [25]
    葛逸飞, 李森, 魏小林. 利用相空间重构方法分析层流扩散火焰燃烧不稳定现象[J]. 工程热物理学报, 2020, 41(6): 1550-1555.

    GE Y F, LI S, WEI X L. An analysis of laminar co-flow diffusion flame inatability based on phase space reconstruction method[J]. Journal of Engineering Thermophysics, 2020, 41(6): 1550-1555(in Chinese).
    [26]
    FU X, YANG F J, GUO Z H. Combustion instability of pilot flame in a pilot bluff body stabilized combustor[J]. Chinese Journal of Aeronautics, 2015, 28(6): 1606-1615.
    [27]
    CHAUDHURI S, KOSTKA S, TUTTLE S G, et al. Blowoff mechanism of two dimensional bluff-body stabilized turbulent premixed flames in a prototypical combustor[J]. Combustion and Flame, 2011, 158(7): 1358-1371. doi: 10.1016/j.combustflame.2010.11.012
    [28]
    SINGH G, MARIAPPAN S. Experimental investigation on the route to vortex-acoustic lock-in phenomenon in bluff body stabilized combustors[J]. Combustion Science and Technology, 2019, 193: 1538-1566.
    [29]
    HARDI J S, ZACH HALLUM W, HUANG C, et al. Approaches for comparing numerical simulation of combustion instability and flame imaging[J]. Journal of Propulsion and Power, 2016, 32: 279-294. doi: 10.2514/1.B35780
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(23)  / Tables(1)

    Article Metrics

    Article views(578) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return